19 research outputs found

    The LOFAR long baseline snapshot calibrator survey

    Get PDF
    Aims. An efficient means of locating calibrator sources for international LOw Frequency ARray (LOFAR) is developed and used to determine the average density of usable calibrator sources on the sky for subarcsecond observations at 140 MHz. Methods. We used the multi-beaming capability of LOFAR to conduct a fast and computationally inexpensive survey with the full international LOFAR array. Sources were preselected on the basis of 325 MHz arcminute-scale flux density using existing catalogues. By observing 30 different sources in each of the 12 sets of pointings per hour, we were able to inspect 630 sources in two hours to determine if they possess a sufficiently bright compact component to be usable as LOFAR delay calibrators. Results. More than 40% of the observed sources are detected on multiple baselines between international stations and 86 are classified as satisfactory calibrators. We show that a flat low-frequency spectrum (from 74 to 325 MHz) is the best predictor of compactness at 140 MHz. We extrapolate from our sample to show that the sky density of calibrators that are sufficiently bright to calibrate dispersive and non-dispersive delays for the international LOFAR using existing methods is 1.0 per square degree. Conclusions. The observed density of satisfactory delay calibrator sources means that observations with international LOFAR should be possible at virtually any point in the sky provided that a fast and efficient search, using the methodology described here, is conducted prior to the observation to identify the best calibrator

    GSK3-mediated raptor phosphorylation supports amino acid-dependent Q2 mTORC1-directed signalling

    Get PDF
    The mammalian or mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) is a ubiquitously expressed multimeric protein kinase complex that integrates nutrient and growth factor signals for the co-ordinated regulation of cellular metabolism and cell growth. Herein, we demonstrate that suppressing the cellular activity of glycogen synthase kinase-3 (GSK3), by use of pharmacological inhibitors or shRNA-mediated gene silencing, results in substantial reduction in amino acid (AA)-regulated mTORC1-directed signalling, as assessed by phosphorylation of multiple downstream mTORC1 targets. We show that GSK3 regulates mTORC1 activity through its ability to phosphorylate the mTOR-associated scaffold protein raptor (regulatory-associated protein of mTOR) on Ser(859). We further demonstrate that either GSK3 inhibition or expression of a S859A mutated raptor leads to reduced interaction between mTOR and raptor and under these circumstances, irrespective of AA availability, there is a consequential loss in phosphorylation of mTOR substrates, such as p70S6K1 (ribosomal S6 kinase 1) and uncoordinated-51-like kinase (ULK1), which results in increased autophagic flux and reduced cellular proliferation

    Initial LOFAR observations of epoch of reionization windows: II. diffuse polarized emission in the ELAIS-N1 field

    Get PDF
    Aims. This study aims to characterise the polarized foreground emission in the ELAIS-N1 field and to address its possible implications for extracting of the cosmological 21 cm signal from the LOw-Frequency ARray-Epoch of Reionization (LOFAR-EoR) data. Methods. We used the high band antennas of LOFAR to image this region and RM-synthesis to unravel structures of polarized emission at high Galactic latitudes. Results. The brightness temperature of the detected Galactic emission is on average ~4 K in polarized intensity and covers the range from-10 to + 13 rad m-2 in Faraday depth. The total polarized intensity and polarization angle show a wide range of morphological features. We have also used the Westerbork Synthesis Radio Telescope (WSRT) at 350 MHz to image the same region. The LOFAR and WSRT images show a similar complex morphology at comparable brightness levels, but their spatial correlation is very low. The fractional polarization at 150 MHz, expressed as a percentage of the total intensity, amounts to 1.5%. There is no indication of diffuse emission in total intensity in the interferometric data, in line with results at higher frequencies Conclusions. The wide frequency range, high angular resolution, and high sensitivity make LOFAR an exquisite instrument for studying Galactic polarized emission at a resolution of ~1-2 rad m-2 in Faraday depth. The different polarized patterns observed at 150 MHz and 350 MHz are consistent with different source distributions along the line of sight wring in a variety of Faraday thin regions of emission. The presence of polarized foregrounds is a serious complication for epoch of reionization experiments. To avoid the leakage of polarized emission into total intensity, which can depend on frequency, we need to calibrate the instrumental polarization across the field of view to a small fraction of 1%

    Radio Astronomy

    Get PDF
    Contains table of contents for Section 4 and reports on five research projects.National Science Foundation Grant AST 92-24191MIT Lincoln Laboratory Agreement BX-4975National Aeronautics and Space Administration/Goddard Space Flight Center Grant NAS 5-31376National Aeronautics and Space Administration/Goddard Space Flight Center Grant NAG5-10MIT Leaders for Manufacturing Progra

    Radio Astronomy

    Get PDF
    Contains table of contents for Section 4 and reports on ten research projects.National Science Foundation Grant AST 90-22501Alfred P. Sloan FellowshipDavid and Lucile Packard Fellowship Award for Science and EngineeringNational Aeronautics and Space AdministrationNational Science Foundation Presidential Young Investigator AwardNational Aeronautics and Space Administration Grant NAGW-2310MIT Lincoln Laboratory Agreement BX-4975National Aeronautics and Space Administration/Goddard Space Flight Center Contract NAS 5-31276MIT Leaders for Manufacturing Progra

    Radio Astronomy

    Get PDF
    Contains table of contents for Section 4 and reports on ten research projects.National Science Foundation Grant AST 90-22501National Aeronautics and Space Administration Grant NAGW 1386National Science Foundation Presidential Young Investigator AwardDavid and Lucile Packard Fellowship for Science and EngineeringNational Aeronautics and Space Administration Grant NAGW-2310MIT Lincoln LaboratorySM Systems and Research CorporationNational Aeronautics and Space Administration/Goddard Space Flight Center Contract NAS 5-30791National Aeronautics and Space Administration/Goddard Space Flight Center Grant NAG 5-10MIT Leaders for Manufacturing Progra

    Radio Astronomy

    Get PDF
    Contains table of contents for Section 4 and reports on seven research projects.National Science Foundation Grant AST 92-24191MIT Class of 1948/Career Development ChairNational Science Foundation Presidential Young Investigator AwardDavid and Lucile Packard FellowshipMIT Lincoln Laboratory Agreement BX-4975National Aeronautics and Space Administration/Goddard Space Flight Center Grant NAS5-31276National Aeronautics and Space Administration/Goddard Space Flight Center Grant NAG5-10MIT Leaders for Manufacturing Progra
    corecore