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ABSTRACT
Faint undetected sources of radio-frequency interference (RFI) might become visible in long
radio observations when they are consistently present over time. Thereby, they might obstruct
the detection of the weak astronomical signals of interest. This issue is especially important
for Epoch of Reionization (EoR) projects that try to detect the faint redshifted H I signals from
the time of the earliest structures in the Universe. We explore the RFI situation at 30–163 MHz
by studying brightness histograms of visibility data observed with Low-Frequency Array
(LOFAR), similar to radio-source-count analyses that are used in cosmology. An empirical
RFI distribution model is derived that allows the simulation of RFI in radio observations. The
brightness histograms show an RFI distribution that follows a power-law distribution with
an estimated exponent around −1.5. With several assumptions, this can be explained with a
uniform distribution of terrestrial radio sources whose radiation follows existing propagation
models. Extrapolation of the power law implies that the current LOFAR EoR observations
should be severely RFI limited if the strength of RFI sources remains strong after time
integration. This is in contrast with actual observations, which almost reach the thermal noise
and are thought not to be limited by RFI. Therefore, we conclude that it is unlikely that there
are undetected RFI sources that will become visible in long observations. Consequently, there
is no indication that RFI will prevent an EoR detection with LOFAR.

Key words: atmospheric effects – instrumentation: interferometers – methods: observa-
tional – techniques: interferometric – dark ages, reionization, first stars – radio continuum:
general.

1 IN T RO D U C T I O N

Radio astronomy concerns itself with the observation of radiation
from celestial sources at radio wavelengths. However, astronomical
radio observations can be affected by radio-frequency interference
(RFI), which might make it difficult to calibrate the instrument
and achieve high sensitivities (Pankonin & Price 1981; Thompson,
Gergely & Vanden Bout 1991; Lemmon 1997; Fridman & Baan
2001). The careful management of spectrum allocation and the
construction of radio-quiet zones help to limit the number of harm-
ful transmitters. If harmful RFI is observed nevertheless, the use of
RFI mitigation methods can sometimes clean the data sufficiently
to allow successful calibration and imaging. Many techniques have
been designed to mitigate the effects of RFI, such as detection
and flagging of data (Weber et al. 1997; Leshem, van der Veen
& Boonstra 2000; Ryabov, Zarka & Ryabov 2004; Baan, Fridman
& Millenaar 2004; Niamsuwan, Johnson & Ellingson 2005; Flöer,
Winkel & Kerp 2010; Offringa et al. 2010a), adaptive cancellation
techniques (Barnbaum & Bradley 1998; Briggs, Bell & Kesteven
2000) and spatial filtering (Leshem et al. 2000; Ellingson & Hamp-
son 2002; Smolders & Hampson 2002; Boonstra 2005; Kocz et al.
2012; Offringa, de Bruyn & Zaroubi 2012b).

Typical radio observations record a few hours of data, and the
results are integrated. In these cases, excising only the interference
that is apparent and thus above the noise often suffices, i.e. the ob-
servation can still reach the thermal noise limit of the instrument.
A new challenge arises, however, when one desires much deeper

observations, and hundreds of hours of observations need to be
integrated. In such a case, weak interference caused by stationary
RFI sources might not manifest itself above the noise in individual
observations, but might be persistently present in the data. Subse-
quently, when averaging these data, the interference might become
apparent and occlude the signal of interest. This is very relevant for
the 21-cm Epoch of Reionization (EoR) experiments, because they
involve long integration times. Several such experiments are under-
way, to measure either the angular power spectrum (de Bruyn et al.
2011; Jacobs et al. 2011; Paciga et al. 2011; Williams et al. 2012) or
the global signal (Bowman & Rogers 2010). Ground-based cosmic
microwave background (CMB) experiments are another class of
experiments involving long integration times (e.g., Subrahmanyan
& Ekers 2002). For these experiments, it is important to know the
possible effect of low-level interference on the data, as these might
overshadow or alter the signal of interest.

In this article, we will connect new insights about RFI to the
angular EoR experiment that is using the Low-Frequency Ar-
ray (LOFAR; de Bruyn et al. 2011; van Haarlem et al. 2013).
The LOFAR EoR project aims to detect the redshifted 21-cm signals
from the EoR using the LOFAR high-band antennas (HBA) anten-
nas (115–190 MHz, zH I = 11.4–6.5). Several fields will be observed
over 100 nights, to achieve sufficient sensitivity to allow the sig-
nal extraction. An EoR calibration pipeline has been designed that
solves for ionospheric and instrumental effects in approximately
100 directions using the Space-Alternating Generalized Expecta-
tion Maximization algorithm (Kazemi et al. 2011). Initial results
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from commissioning observations show that in a single night the
thermal noise level can almost be reached (Yatawatta et al. 2013).

This work explores the information that is present in interference
distributions, in order to analyse possible low-level interference that
is not detectable by standard detection methods. Our approach is
similar to the radio-source-count analyses that are used in cosmol-
ogy (Condon 1984), also named log N − log S analyses, where N
and S refer to the celestial source count and brightness, respectively.
The slope in such a plot contains information about source popula-
tions, their luminosity functions and the geometry of the Universe.
We analyse such a double-logarithmic plot for the case of terrestrial
sources, with the ultimate goal of estimating their full spatial and
brightness distributions. This results in a better insight into the ef-
fects of low-level interference and allows one to simulate the effects
of interference more accurately.

This paper is organized as follows: in Section 2, we calculate a
model for terrestrial interfering source distribution based on various
assumptions. Section 3 presents the methods that we use to generate
and analyse brightness histograms of LOFAR data. Section 4 de-
scribes the two LOFAR data sets that have been used to perform the
experiment. The results of analysing the sets are presented in Sec-
tion 5. Finally, in Section 6 the results are discussed and conclusions
are drawn.

2 MO D E L L I N G T H E BR I G H T N E S S
D I S T R I BU T I O N

Interference is generated by many different kinds of transmitters,
and these will have different spatial and brightness distributions
(‘spatial’ refers here to the distribution on the Earth). For exam-
ple, aeroplanes and satellites have widely different heights, while
other sources are ground-based. Even ground-based sources might
be spread differently. For example, it can be expected that citizens’
band (CB) devices, that are often used in cars, are distributed dif-
ferently from broadcasting transmitters. For deliberate transmitters,
the frequency at which interference occurs can identify the involved
class of devices, because devices are constrained by the bands that
have been allocated for the given class.

In time-frequency space, interfering sources can have complex
structures. They can also be intermittent and different sources might
overlap in time-frequency space. An example of interfering sources
can be seen in Fig. 1, which shows raw visibility data of one base-
line of a LOFAR observation in a dynamic spectrum. Because
many sources change over time, are repetitive or affect multiple
channels, many sources produce multiple unconnected features in
time-frequency space. It is often not clear what constitutes a single
interfering source, hence it is hard to count individual sources. In-
stead, we will count the number of times a given brightness occurs
in time-frequency space. This – as well as many other effects –
will of course influence the distribution. If sources overlap in the
time-frequency space, the situation is somewhat similar to the case
where multiple unresolved celestial radio sources in the reception
pattern of a telescope only allow observation of a sum of sources.
However, in that case it is still possible to validate radio-source
models by comparing log N − log S histograms (Scheuer 1957).

It is common knowledge that in a uniform Euclidian Universe
source counts behave like power-law distributions. The differential
source-count distribution for sources on a flat surface is a power
law with −2 exponent. We will derive this expected intrinsic source
distribution for interfering radio sources. After that, we will analyse
the issues that arise when measuring the distribution by counting
samples.

In every dynamic spectrum we can measure the number of times
that the flux density is within a particular range. Dividing this quan-
tity by the total number of samples yields the relative number of
events as a function of intensity. We will refer to this quantity
with the term ‘rate density’. We will now start by estimating the
rate density function of ground-based interfering sources. Consider
an interfering point source of strength I that denotes the transmit-
ting power normalized by the observational channel resolution (e.g.
measured in W/Hz). This source is observed by an interferometer
that consists of two antennas or stations with gains g1, g2, which in-
clude all instrumental effects. The antennas are located at distances
r1, r2 from the source. The interferometer will record an apparent
instantaneous strength S of

S(r1, r2) = I
g1g2

4πr1r2
, (1)

Figure 1. A dynamic spectrum of a small part of an observation. The features with significantly higher values are caused by interference. Some of these have
a constant frequency, while others are more erratic.



Distributions of terrestrial radio sources 587

with (real-valued amplitude) gains g1, g2 > 0 and rL > r1, r2 > 0.
Here, rL is a limiting distance, which will be well below the diameter
of the Earth. The formula represents a spherically propagating wave
in free space. We will limit our analysis to cross-correlated antennas;
the auto-correlations will be ignored.

We assume that the source observed is fully coherent, but a pos-
sible de-coherence factor can be absorbed in the gains. Due to the
small bandwidth of most interfering sources, most RFI will be re-
ceived coherently, because of the narrow-band condition. With a
frequency resolution �ν = 0.76 kHz, the narrow-band condition
�ν � (2πτ )−1 with correlation delay τ will hold for baselines up
to a few km, because it holds as long as the baseline length is signif-
icantly less than �x = c(2π�ν)−1 ≈ 50 km. Because the velocity
resolution of LOFAR is 1.5 km s−1 at 150 MHz, and larger at lower
frequencies, a Doppler frequency shift due to movement of the
source will only be significant if its velocity is at least 1.5 km s−1

relative to the antennas. Since the relative velocities towards dif-
ferent antennas in the array will be similar for such high-velocity
transmitters (i.e. satellites), there will be hardly any decorrelation
because of Doppler shifting.

Although two antennas do not necessarily observe the same RFI
sources, for source-count analysis we can treat the interferometer
geometrically as a single point, as both antennas will see the same
distribution. Then, we can express the received amplitude S for a
given distance r and interferometric gain g = g1g2 as

S(r) = Ig

4πr2
. (2)

Next, we assume that all RFI sources have equal constant
strength I and follow a uniform spatial distribution in the local
two-dimensional horizontal plane. These assumptions are obviously
simplifications, but we will address these later. Using these assump-
tions, we can express the expected inverse cumulative rate density
of sources at distance r as

Fdistance≥r (r) = N − ρπr2, (3)

with N the total number of sources and for some constant ρ that
represents the number of sources per unit area. The cumulative
number of sources Famplitude≤S that have an amplitude of at most S
can be calculated from this with

Famplitude≤S(S) = Fdistance≥r (R(S)) = N − ρIg

4S
(4)

where R(S) = S−1, the inverse of S, i.e. the function that returns
the distance r for a given amplitude S. Finally, the rate density can
be calculated by taking the derivative,

fS(S) = dFamplitude≤S

dS
= ρIg

4S2
. (5)

Therefore, if we plot the histogram of the RFI amplitudes in a
log –log plot, we expect to see a power law with a slope of −2
over the interval in which the RFI sources are spread like uniform
sources on a two-dimensional plane.

2.1 Propagation effects

So far, we have assumed that the electromagnetic radiation propa-
gates through free space, resulting in an r−2 fall-off. In reality, the
radiation will be affected by complicated propagational effects due
to the surface of the Earth. A commonly used propagation model is
the empirical model determined by Okumura et al. (1968), which
was further developed by Hata (1980). Hata gives the following

analytical estimate for Lp, the electromagnetic propagation loss be-
tween two ground-based antennas:

Lp = 69.55 + 26.16 log10 fc − 13.82 log10 hb − a(hm)

+ (44.9 − 6.55 log10 hb) log10 r, (6)

where Lp the loss in dB, fc the radiation frequency in MHz, hb the
height of the transmitting antenna in metres, hm the height of the re-
ceiving antenna in metres, r the distance between the antennas in me-
tres, and a(hm) a correction factor in dB that corrects for the height
of the receiving antenna and the urban density. Hata found this
model to be representative for frequencies fc ∼ 150–1500 MHz, with
transmitter heights hb ∼ 30–200 m, receiver heights hm ∼ 1–10 m
and over distances r ∼ 1–20 km.

Converting from a subtracted term in decibels to a flux density
factor LS results in

LS = 1

10
10Lp = ζ rη, (7)

with η and ζ given by

η = 4.49 − 0.655 log10 hb, (8)

ζ = f 2.616
c

h1.382
b

− 106.955− 1
10 a(hm). (9)

Note that according to Hata’s model, the exponent of the power law
η depends only on the height of the transmitting antenna, i.e. it is
independent of frequency, receiver height and urban density. To find
the rate density function fp that considers propagation effects, one
can replace S(r) in equations (4) and (5) with one that includes the
propagation effects,

S(r) = Ig

4πζ rη
. (10)

The resulting rate density function fp is

fp(S) = d

dS

[
N − ρπ

(
Ig

4πζS

)2/η
]

= ρ2π

ηS

(
Ig

4πζS

)2/η

. (11)

Consequently, due to non-free-space propagation effects, the ob-
served log–log histogram is predicted to have a −( 2

η
+ 1) slope. By

substituting η, one finds

slope(hb) = 1

0.3275 log10 hb − 2.245
− 1. (12)

This yields estimated distribution slopes of −1.57 and −1.67 for
30 m and 200 m high transmitters, respectively. In Fig. 2, the slope
value is plotted as a function of the transmitter height, including
extrapolated values for transmitter heights down to 1 m.

We note that a uniform distribution of meteors or aircrafts which
reflect free-space propagating RFI can create a power-law distri-
bution with a similar slope: a uniform two-dimensional distribu-
tion of reflecting sources will create a −1.5 slope, while a uni-
form three-dimensional distribution will create a −1.75 slope. With
brightness-distribution analyses one can therefore not distinguish
between transmitters affected by Hata’s propagation model and re-
flectors affected by free-space propagation. Reflected RFI might
become relevant at lower amplitude levels.

2.2 Thermal noise contribution

The full measured distribution will consist of the power-law dis-
tribution combined with that of the thermal noise and the celestial
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Figure 2. Effect of transmitter height on the slope of a log–log histogram.
According to Hata’s model, this is valid for the range 30–200 m. The trend of
the slope will not continue indefinitely when increasing the height further.
Instead it will converge to a −2 slope, which corresponds to free-space
propagation.

signal. For now, we will ignore the contribution of the celestial sig-
nal, as its contribution to the amplitude distribution will be minimal
when observing fields without strong celestial sources. For exam-
ple, the strongest apparent celestial source in the NCP EoR field is
around 5 Jy (Yatawatta et al. 2013). The standard deviation of the
noise, however, is around 100 Jy on highest LOFAR resolutions,
and will have a larger contribution on the histogram.

The real and imaginary components of the noise in the cross-
correlations are independent and identically Gaussian distributed
with zero mean and equal variance. Consequently, an amplitude x
will be Rayleigh distributed (Papoulis & Pillai 2001, section 6.2):

fnoise(x) =
⎧⎨
⎩

x
σ 2 e

−x2

2σ2 x > 0,

0 otherwise.
(13)

Because most of the samples will be unaffected by RFI, this will
be the dominating distribution. The Rayleigh distribution is plotted
together with the −2 power-law distribution of equation (5) in Fig. 3.

So far, these are the expected histograms for pure noise and
pure RFI that propagates through free space. However, the mea-
sured distribution is a mixture of the two. Analytic derivation of
the corresponding mixed amplitude distribution is not trivial, but
the distributions can easily be estimated by drawing complex sam-
ples from the two distributions and calculating and counting the

Figure 3. The Rayleigh and power-law distributions in a log–log plot. The
power-law distribution (equation (5)) has a constant slope of −2 over the
range it is defined. The slope of the Rayleigh distribution in the limit of the
origin is 1. Its maximum occurs where the amplitude value equals its mode
σ , which is 1 in this example. For higher amplitudes, its slope decreases
exponentially.

Figure 4. Histograms of simulated samples that all have a contribution
of noise and RFI. Various settings of the parameters were used, and sam-
ples were drawn as described in equation (14). Solid lines: the combined
distributions, dashed lines: the power-law distributions before mixing.

amplitudes. A sample can be drawn from the RFI distribution by
integration, scaling and inversion of the rate density function in
equation (11). To invert the cumulative function, one needs to as-
sume that there are no sources beyond some limiting distance rL.
With this assumption, a single complex RFI contaminated sample
SRFI can be sampled with:

SRFI ← Ig

4πζx
η/2
u r

η
L

ei2πyu . (14)

Here, SRFI is a new complex RFI sample that follows a power-law
distribution; η and ζ are defined in equations (8) and (9); I is the
average intrinsic strength; g is the gain of the instrument; 0 < xu,
yu ≤ 1 are two independently drawn uniformly distributed samples;
and rL is the maximum distance of visible sources. A sample S
that is contaminated by both RFI and noise can be drawn with
S ← vn + wni + SRFI, with vn, wn ∼ N(μ = 0; σ ). An example of
distribution curves of S for η = 2 and various settings of Ig/4πζ r2

L

are given in Fig. 4.

2.3 Parameter variability

In reality, the parameters ρ, I and g, which are the RFI source
density per unit area, RFI source strength and instrumental gain,
respectively, will not be constant, but can change over time and
frequency. Therefore, they are stochastic variables. However, since
each specific value for these parameters produces a power law, the
combined distribution will still show a power law, as long as the
parameters follow a distribution that is steep at high amplitudes (in
log –log space), such as a Gaussian or uniform distribution.

One instrumental effect that is absorbed in g is the frequency re-
sponse of the instrument, i.e. the antenna response in combination
with the band-pass of the analogue and digital filters. Because the
data that are analysed in Section 5 have initially not been band-pass
calibrated, the instrumental response is not uniform over frequency.
We determined that the gain variation due to the band-pass is about
one order of magnitude for the low-band antennas (LBA; 30.1–
77.5 MHz) and about a factor of 2 for the HBAs (115.0–163.3 MHz).
The frequency dependency of the gains due to the band-pass will
consequently smooth the data in the brightness histogram in hori-
zontal direction by one order of magnitude or less.
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Another effect that is absorbed in g is the beam of the instrument.
At the point of writing, LOFAR beam models are still being devel-
oped and are not yet well parametrized near the horizon. It is likely
that most RFI sources are observed at the edges of the beam. Nev-
ertheless, most sources will be observed with similar gains (within
one order of magnitude), and it can be expected that the beam will
have a limited effect on the histogram properties of an observation.
It is therefore comparable with the effect of the frequency response.

The stochastic nature of I, that is caused by the spread of trans-
mitters with different intrinsic strengths, might also have an effect
on the log N–log S histograms. It is unlikely that I follows a uni-
form or Gaussian distribution, because the distribution will contain
few strong transmitters (such as radio stations) and many weak
transmitters (such as remote controls). Therefore, variable I might
follow a power-law distribution by itself. It is likely that strong
transmitters transmit more on average, and therefore contaminate
more samples as well. High-power transmitters, such as radio sta-
tions, have a typical equivalent isotropically radiated power (EIRP)
in the order of 10–100 kW. Low-power transmitters, such as remote
controls, transmit with an order of 100 mW or even less. Therefore,
these devices have a spread of around 6 orders of magnitudes in
power. As long as the exponent of the power law of I is less steep
(i.e. less negative) compared to the power law caused by the spatial
distribution, the spatial distribution will dominate the histogram at
high amplitudes. With a spatial −1.5 power law and the given trans-
mitting powers, the low-power transmitters should contaminate a
factor of 109 more samples compared to the high-power transmit-
ters to dominate the high-amplitude distribution, which is unlikely.
Therefore, it is likely that the spatial distribution will dominate the
power law in the histogram. Otherwise, a turn-over point should be
visible in the histogram.

From equation (11) it can be seen that the ρ, I and g parameters
have the same effect of scaling the power-law distribution, and do
not change its shape or slope. Therefore, with distribution analyses
one can e.g. not determine whether the distribution is dominated by
low-power sources within the horizon or by scattered signals from
over the horizon. The horizon of an antenna is estimated with

√
2hr

(Bullington 1977), with r the radius of the Earth and h the height of
the antenna. For LOFAR, the horizon is at about 5 km.

3 M E T H O D S

In this section we will briefly discuss how the histograms are created,
how the slope of the underlying RFI distribution is estimated and
show how to constrain some of the intrinsic RFI parameters.

3.1 Creating a histogram

While creating a histogram is trivial, it is important to note that it is
necessary to have a variable bin size. This is mandated by the large
dynamic range of the histogram that we are interested in. Therefore,
we chose to have a bin size that increases linearly with the amplitude
S, and the rate counts are divided by the bin size after counting.

3.2 Estimating σ and slope parameters

The mode σ of the Rayleigh distribution is estimated by finding
the amplitude with the maximum occurrences, i.e. the amplitude
corresponding to the peak of the histogram. The slope is estimated
using linear regression over a visually selected interval. We have
validated that the slope does not significantly change by using a
slightly different interval.

Fitting straight lines to the distribution curve in a log–log plot is
not the most accurate way of estimating the exponent of a power-law
distribution (Clauset, Shalizi & Newman 2009). However, because
of our enormous sample size, which allows fitting the line over
a large interval, the estimator will be sufficiently accurate for our
purpose. Nevertheless, we will additionally calculate a maximum-
likelihood estimator for comparison. The maximum-likelihood es-
timator for the exponent in a power-law distribution is given by the
Hill estimator α̂H (Hill 1975; Clauset et al. 2009), defined as:

α̂H = 1 + N

(
N∑

i=1

ln
xi

xmin

)−1

, (15)

with N the number of samples and xi for 0 < i ≤ N the samples that
follow a power law with lower bound xmin.

3.3 Determining RFI distribution limits

In this section we will show how to put upper and lower constraints
on the power-law distribution. Assume that we have found a power
law with exponent α and factor β over an amplitude region [S1;
S2], resulting in the rate density function h(S) = βSα . S1 and S2

are selected by visual inspection of the histogram. Assume that
the histogram contains Npart (RFI) samples with amplitude >S1, as
sketched in Fig. 5, and that the effect of the Rayleigh component on
the histogram >S1 is negligible. The hypothetical upper limit SU of
the distribution can be found by solving

SU∫
S1

h(S)dS = Npart. (16)

The observed histogram will break down beyond some ampli-
tude because of several reasons: the samples are digitized with
an analogue-to-digital converter (ADC) with limited range; we ob-
serve for a limited time and the rate count is discrete; and, under
the assumption of a uniform spatial distribution of RFI transmitters,
samples with very high amplitude would have to be produced by
transmitters that are very close to the telescope. However, it is likely

Figure 5. Cartoon of how a constraint on the lower fall-off point of the
power-law distribution can be determined. Note that the labelled areas are
areas as occupied in a linear plot, i.e. the integration of the density function.
Areas in a log–log plot are not linearly related to the integral. There are two
ways to estimate the lower constraint SL: (i) the areas Na and Ntotal − Npart

are equal if Ig/r
η
L is constant during the observation, and (ii) if one assumes

Ig/r
η
L ∼ uniform, then Na + Nb = Ntotal − Npart.
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that the uniform spatial distribution of transmitters will break down
at closer distances.

Solving equation (16) results in

SU = α+1

√
α + 1

β
Npart + Sα+1

1 . (17)

One can estimate the lower limit SL in a similar way. This can be
solved by assuming the area labelled Na in Fig. 5 equals the number
of samples to the left of S1. The area labelled Nb is assumed to
be zero for now, which assumes the power law has a sharp cut-off
on the left side, e.g. because of the curvature of the Earth. Solving
Na = Ntotal − Npart results in

SL = α+1

√
α + 1

β

(
Npart − Ntotal

) + Sα+1
1 . (18)

With the assumption that Ig/r
η
L ∼ a uniform distribution, the

area labelled in Fig. 5 as Nb is also part of the RFI distribution, and
a stronger constraint S̃L can be found, yielding

S̃L = α+1

√
− 1

α

(
α + 1

β

(
Npart − Ntotal

) + Sα+1
1

)
. (19)

With estimates of α, β, SL and SU, one has obtained a parametriza-
tion of the RFI distribution. As was shown in Section 2.2, the
left-most point where the power-law distribution falls off is SL =
Ig/4πζ r

η
L. This value represents the apparent brightness of the

RFI sources that are furthest away from the telescope. With a fully
parametrized distribution of the effect of RFI sources, an empirical
model for RFI effects can be made. Moreover, one can calculate
E(SR), the expected apparent strength of RFI:

E(SR) = 1

NLU

SU∫
SL

βSαSdS = β

NLU

[
1

α + 2
Sα+2

]SU

SL

(20)

Here, NLU is the number of samples between SL and SU after nor-
malizing for the bin size. Evaluating this results in

E(SR) =
(
Sα+2

U − Sα+2
L

)
(α + 1)(

Sα+1
U − Sα+1

L

)
(α + 2)

. (21)

This is essentially the average flux density that is caused by RFI
without using RFI detection or excision algorithms. E(SR) has the
same units as SL and SU, thus after calibration (see Section 3.4) could
be given in Jy. In practice, the increase of data noise after correlation
is much less severe because of RFI flagging, which excises a part of
the RFI. One can assume that all RFI above a certain power level is
found by the detector. Since modern RFI detection algorithms can
find all RFI that is detectable ‘by eye’ (Offringa et al. 2010a), this
power level will be near the level of the noise mode. We use the
AOFlagger for RFI detection, which will be described in Section 4.

Another interesting parameter is Sd, the average lower limit of
detected RFI. It can be calculated by finding the point on the distri-
bution where the area under the distribution to the right of Sd equals
the real number (true positives) of RFI samples. Therefore, the limit
is calculated similar to equation (18), where the term Npart − Ntotal

needs to be replaced with NRFI, which equals the total number of
samples detected as RFI minus the false positives. In Offringa et al.
(2013) the false-positives rate for the AOFlagger is estimated to be
0.5 per cent.

Finally, E(Sleak), which is the expected value of leaked RFI not
detected by the flagger, can be calculated by replacing SU with
Sd in the numerator of equation (21) and subtracting the removed

number of samples from the total of number of samples. Assume
that a fraction of κ samples are not detected as RFI and 1 − κ have
been detected as RFI, then

E(Sleak) = 1

κNLU

Sd∫
SL

βSαSdS =
(
Sα+2

d − Sα+2
L

)
(α + 1)

κ
(
Sα+1

U − Sα+1
L

)
(α + 2)

. (22)

This is the average contribution that leaked RFI will have on a
single sample. It has the same units as the parameters SL, SU and
Sd. Typical values for κ are 0.95–0.99.

3.4 Calibration

We can assign flux densities to the horizontal axis of the histogram
by using the system equivalent flux density (SEFD) of a single
station. The current LOFAR SEFD is found to be approximately
3400 Jy for the HBA core stations and 1700 Jy for the remote sta-
tions in the frequency range from 125 to 175 MHz. For all Dutch
LBA stations, in the frequency range 40–70 MHz the SEFD is ap-
proximately 34 000 Jy. The standard deviation σ in the real and
imaginary values is related to the SEFD with

σ = SEFD√
2�ν�t

, (23)

where �ν is the bandwidth and �t is the correlator integration time.
The standard deviation will appear as the mode of the Rayleigh
distribution. By fitting a Rayleigh function with fitting parameter σ

to the distribution, one finds the corresponding flux density scale.
RFI sources will enter through the distant sidelobes of the station

beams from many unknown directions. Moreover, models for the
full beam are often hard to construct. Therefore, we will not try to
calibrate the beam, and the flux densities in the histogram are appar-
ent quantities. Consequently, we will not be able to say something
about the true intrinsic power levels of RFI sources.

3.5 Error analysis

An estimate for the standard deviation of the slope estimator α̂ can
be found by calculating SE(α̂), the standard error of α̂. The standard
error of the slope of a straight line (Acton 1966, pp. 32–35) is given
by

SE(α̂) =
√

SSyy − α̂SSxy

(n − 2) SSxx

, (24)

where SSxx, SSxy and SSyy are the sums of squares, e.g.
SSxy = ∑n

i=1(xi − x̄)(yi − ȳ) and n is the number of samples.
However, we found that this is not a representative error in our
case, because the errors in the slope are not normally distributed.
Therefore, we also introduce an error estimate εα that quantifies
a normalized standard deviation of the slope over the range. This
error is formed by calculating the slope over nα smaller sub-ranges
in the histogram, creating nα estimates αi. If the errors in αi are
normally distributed with zero mean, an estimate of the variance of
α̂ can be calculated with

εα̂ =
√∑

(αi − α̂)2

n2
α − nα

. (25)

This estimate is slightly depending on the number of sub-ranges that
is used, nα , because the errors are not Gaussian distributed, but we
found that εα̂ is more representative than the standard error of α̂.
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The standard error of the Hill estimator of equation (15) is
(Clauset et al. 2009)

SE(α̂H) = −α − 1√
n

+ O
(

1

n

)
. (26)

Because the number of samples is very large (>1011), the O-term
will be very small. Therefore, we will calculate the quantity without
this term.

4 DATA D ESCRIPTION

We have analysed the distributions of two data sets. Both data
sets are 24-h LOFAR RFI surveys and are extensively analysed in
Offringa et al. (2013). We refer to van Haarlem et al. (2013) for
a full description of the capabilities of LOFAR. The analyses will
cover only Dutch stations. Each Dutch station consists of 96 dipole
LBA and one or two fields totalling 48 tiles of 4 × 4 bow-tie HBA.
The core area of LOFAR is located near the village of Exloo in
the Netherlands, where the station density is at its highest. The six
most densely packed stations are on the Superterp, an elevated area
surrounded by water situated 3 km North of Exloo. A radio-quiet
zone of 2 km around the Superterp has been established, but is
relatively small and households exist within 1 km of the Superterp.
With the help of the spectrum allocation registry, the most-obvious
transmitters can easily be identified and ignored in LOFAR data
(Offringa et al. 2013). However, many interfering sources have an
unknown origin.

In the two data sets, we have used the correlation coefficients
of cross-correlated stations, i.e. the raw visibilities. In one data
set, the LBA were used and the frequency range 30.1–77.5 MHz
was recorded, while in the other the HBA were used to record the
frequency range 115.0–163.3 MHz. More stations were used in the
LBA set. The specifications of the two sets are listed in Table 1. The
stations that have been used are geometrically spread over an area
of about 80 km and 30 km in diameter at maximum for the LBA and
HBA sets, respectively. For EoR detection experiments, the HBA
are more important than the LBA, because they cover the frequency
range of the redshifted EoR signal.

Although we have used Hata’s model to estimate the RFI log–
log histogram slope, our frequency range falls partly outside the
frequency range over which Hata’s model has been verified. How-
ever, according to Hata’s model the observing frequency does not
influence the power-law exponent in the frequency range 150–
1500 MHz, thus it can be assumed the exponent will at least not
significantly differ over the HBA range.

Table 1. Data set specifications.

LBA set HBA set

Observation date 2011-10-09 2010-12-27
Start time 06:50 UTC 0:00 UTC
Length 24 h 24 h
Time resolution 1 s 1 s

Frequency range 30.1–77.5 MHz 115.0–163.3 MHz
Frequency resolution 0.76 kHz 0.76 kHz
Number of stations 33 13
Total size 96.3 TB 18.6 TB

Field NCP NCP
Amount of RFI detected
by the AOFlagger 1.77 per cent 3.18 per cent

To detect RFI, the AOFlagger (Offringa et al. 2010b) is used.
This RFI detector estimates the sky contribution by iteratively ap-
plying a high-pass filter to the visibility amplitudes of a single base-
line in the time-frequency plane. Subsequently, it flags line-shaped
features with the SumThreshold method, which is a combinatorial
threshold method (Offringa et al. 2010a). Finally, the scale-invariant
rank (SIR) operator, a morphological technique to search for con-
taminated samples, is applied on the two-dimensional flag mask
(Offringa, van de Gronde & Roerdink 2012a).

Because the AOFlagger detector is partly amplitude based, it is
likely that low-level RFI will leak through the detector. Since it is
also low-level RFI we are interested in, we will analyse unflagged
data and the RFI classified data.

5 R ESULTS

In this section we present the histograms of the LBA and HBA sets
and the results that were obtained by applying the methodology
discussed in Section 3.

5.1 Histogram analysis

Fig. 6 shows the histograms with logarithmic axes for the LBA and
HBA sets. In both sets, it is clear that at least one component with a
Rayleigh and one with a power-law distribution have been observed.
The left part of the histogram matches the Rayleigh distribution well
up to the mode of the distribution. The bulge around the mode of
the LBA histogram is wider due to the larger effect of the antenna
response, i.e. variability of g as discussed in Section 2.3. As can be
seen in Fig. 7, the Rayleigh bulges of individual sub-bands are not
that wide, but they are not aligned because of the differing noise
levels.

It is to be expected that the RFI-dominated part of the distribu-
tions at different frequencies will reflect the underlying RFI source
populations. Both Figs 7 and 8 show that the power-law part of the
distributions is very different for different sub-bands. Nevertheless,
combining the data of all the sub-bands results in reasonably sta-
ble power-law distributions. The variation could be caused by the
different power-law exponents that source populations at different
frequencies might have. It could also be caused by a differing num-
ber of transmitters. In that case, the underlying power law might
not always be apparent, because not enough samples are combined.
By making distributions over different frequency ranges, we have
verified that the power law is not dominated by a few obvious and
known sources.

To make sure that the antenna response does not influence the
result of the slope, we have also analysed the curves after a sim-
ple band-pass calibration. This was performed by dividing each
sub-band by its standard deviation after RFI excision. Because the
standard deviation of the distribution might be affected by the RFI
tail of the distribution, we compare the two histograms to make sure
the power-law distribution is not significantly changed. The result-
ing histograms are shown in Fig. 9. This procedure makes the bulge
of the LBA histogram similar to the bulge of a Rayleigh curve and
extends the power-law part. Nevertheless, it does not change the
log–log slope of the power law in either histograms. This validates
that the variable gain that is caused by the antenna response does
not change the observed power law. Consequently, it can be ex-
pected that other stochastic effects, such as the intrinsic RFI source
strength and the beam gain due to a differing direction of arrival, will
similarly not affect the power law. Because the band-pass corrected
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Figure 6. The histograms of the two data sets before band-pass correction and flux calibration.

Figure 7. Histograms for five different 0.2 MHz LBA sub-bands without
band-pass correction and flux calibration. The continuous lines represent
the data before RFI flagging. The dashed lines are the histograms of the
samples that have been classified as RFI.

histograms should provide a more accurate analysis, we will use the
corrected histograms for further analysis.

The Rayleigh parts of the distributions are plotted in Fig. 10, along
with a least-squares fit and its residuals. Both histograms follow the
Rayleigh distribution for about five orders of magnitude, which is
validated by the residuals that show only noise. It breaks down about
one order of magnitude before the mode of the distributions. This is
because of the multi-component nature of the distributions, as was
described in Section 2.2.

If we go back to Fig. 9, we see that in the LBA the power
law is stable for about three orders of magnitude, and one order
more in the HBA. Fig. 11 shows the slope of the log–log plot
as a function of amplitude, which was constructed by performing
linear regression in a sliding window, with a window size of 1
logarithmic unit. The HBA shows very little structure in the slope,
but the LBA is less stable and shows some features in its power-law
part. Linear regression on the power-law part of the log–log plot

Figure 8. Histograms for five different 0.2 MHz HBA sub-bands without
band-pass correction and flux calibration. The continuous lines represent
the data before RFI flagging. The dashed lines are the histograms of the
samples that have been classified as RFI.

results in a slope of −1.62 for the LBA and −1.53 for the HBA.
These and the other derived quantities have been summarized in
Table 2. Although the HBA slope does not show any other significant
features besides the Rayleigh and power-law curves, the LBA power
law ends with a bulge around an amplitude of 106. This bulge is
caused by a very strong RFI source affecting lots of samples, and is
a single outlier in the spatial distribution. We found this is caused
by RFI observed for about an hour in the late afternoon in the
lower LBA frequency regime, around 30–40 MHz. Leaving this
frequency range out flattens the bulge significantly, but does not
completely eliminate it, because the source put the receivers in a
non-linear state, causing leakage at lower intensity levels in the
other sub-bands. Unlike linear regression, the fitting region of the
Hill estimator is not limited at the high end. Consequently, because
of the bulge, the Hill estimator evaluates for the LBA into a slope
that is less steep, with a value of −1.53. For the HBA set, the Hill
estimator is equal to the −1.53 value found by linear regression.



Distributions of terrestrial radio sources 593

Figure 9. Observed LBA distribution after band-pass correction and flux calibration. Sl1 and Sl2 denote the limits of the distribution with a sharp lower cut-off
(equation 18) and uniform lower limit (equation 19), Sd is the average lower limit of RFI that is detected.

Figure 10. Least-squares fits of Rayleigh distributions to the observed LBA and HBA histograms, after band-pass correction but without flux calibration.

Figure 11. The slope of the band-pass corrected log–log histogram as a function of the brightness. The horizontal lines indicate the fitted slope over the full
(semi-) stable region. The horizontal axis is not calibrated.
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Table 2. Estimated distribution quantities per data set.

Symbol Description LBA set HBA set

Ntotal Total number of samples in histogram 8.0 × 1011 5.4 × 1011

σ Rayleigh mode (assumed to be SEFD/
√

2�t�ν, 770 Jy 77 Jy
where SEFD is the SEFD)

Estimators for power-law distribution parameters

α Exponent of power law in RFI distribution −1.62 −1.53
SE(α) Standard error of α 2.8 × 10−3 6.9 × 10−4

αH Hill estimator for power-law exponent −1.53 −1.53
SE(αH) Standard error of αH 8.9 × 10−6 1.0 × 10−5

εα Sampled estimate of standard deviation of α 6.1 × 10−2 1.2 × 10−2

β Scaling factor of power law with exponent α 4.0 × 1017 3.4 × 1015

η Radiation fall-off speed for α (η = 2 is free space) 3.23 3.77

Limits

SL Constraint on lower fall-off point of power law 21 mJy 6.2 mJy
S̃L As SL, but assuming Ig/rη ∼ uniform 47 mJy 14 mJy
Sd Expected lowest apparent level of RFI detected 26 Jy 5.7 Jy
E(SR) Apparent RFI flux density 2700 Jy 140 Jy
E(Sleak) Residual apparent RFI flux density after excision 484–496 mJy 167–171 mJy

Same as above, but by assuming 10 per cent occupancy 384 mJy 120 mJy
REFD RFI equivalent flux density 18.9–19.3 Jy 6.5–6.7 Jy

Average station temperatures

Tsys System temperature (in clean bands) 5000 K 640 K
TR RFI temperature 17 000 K 1200 K
Tleak Temperature of undetected RFI 3.2 K 1.4 K

On the assumption that the histogram is zero below amplitude
SL, we find that SL = 21 mJy for the LBA and SL = 6.2 mJy for
the HBA (see Table 2). If instead it is assumed that the histogram
has a uniform distribution below some amplitude S̃L, we find that
the amplitude at which the power-law distribution breaks down is
approximately a factor of 2 higher. The two different assumptions on
how the power-law distribution breaks down have a small effect on
E(Sleak), the expected value of the leaked RFI. By using S̃L instead
of SL, it is a few per cent lower. By assuming a 100 per cent RFI
occupancy, we find that the expected value of leaked RFI is 484–
496 mJy for the LBA and 167–171 mJy for the HBA. By assuming
10 per cent occupancy, the value for E(Sleak) is about 25 per cent
reduced. The RFI occupancy only starts to have a significant effect
on E(Sleak) if it is well below 10 per cent.

6 C O N C L U S I O N S A N D D I S C U S S I O N

We have analysed the histogram of visibility amplitudes of
LOFAR observations and found that, within a significant range of
the histogram, the contribution of RFI sources follows a power-law
distribution. The found power-law exponents of −1.62 and −1.53
for the 30–78 MHz LBA and 115–163 MHz HBA observations, re-
spectively, can be explained by a uniform spatial distribution of
RFI sources, affected by propagation described surprisingly well
by Hata’s electromagnetic propagation model. Taken at face value
these exponents imply in Hata’s model that the average transmitting
heights for sources affecting the LBA and HBA are 79 and 13 m,
respectively. There are no 79 m high transmitters nearby LOFAR
stations in the LBA frequency range. Additionally, Hata’s model
only goes down to 150 MHz, and it is possible that the electromag-
netic fall-off due to propagation will be different for lower frequen-
cies. Intervals for the exponents with representative 3σ boundaries
are [−1.80; −1.44] for the LBA and [−1.57; −1.49] for the HBA,

giving average transmitter heights of [0.6; 800] and [3.1; 23] m for
the LBA and HBA, respectively. Therefore, the LBA measurements
are clearly not accurate enough to be conclusive. Moreover, because
the power-law distribution analyses involve many assumptions, it is
uncertain whether the analyses are sufficiently accurate for making
these detailed conclusions.

On the assumption that the power-law distribution for RFI sources
will continue down into the noise, we have constructed a full
parametrization of the RFI apparent flux distribution. By assum-
ing that all samples contain some contribution of RFI, we find that
the average flux density of RFI after excision by automated flagging
is 484–496 mJy for the LBA and 167–171 mJy for the HBA. These
values should be compared to the noise in individual samples of
770 Jy (LBA) and 77 Jy (HBA) (see Table 2), and are upper limits
for what can be expected. If in fact not all samples are affected
by RFI, the leaked RFI flux will be smaller, and will of course be
zero in the extreme case that the detector has found and removed
all RFI.

The apparent RFI flux densities can be converted to a RFI station
temperature that excludes the system noise and sky noise compo-
nents. If we use a station efficiency factor ηst = 1 and effective areas
LBA Aeff = 398 and HBA Aeff = 512 with again 100 per cent RFI
occupancy, our models lead to RFI temperatures of 17 000 K and
1200 K for, respectively, the LBA and the HBA. These are relatively
high compared to, for example, the survey by Rogers et al. (2005),
who report that on two different sites, 20 per cent and 27 per cent of
the spectrum has a temperature above 450 K in the range of 50–
1500 MHz. However, our post-detection RFI station temperatures,
which arise from the residual apparent RFI flux density estimates,
are 3.2 K and 1.4 K for the LBA and HBA, respectively. Due
to LOFAR’s high resolution and accurate flagging strategy, this is
achieved by flagging a relatively small data percentage of 1.8 (LBA)
and 3.2 per cent (HBA).
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In projects such as the EoR detection experiment with LOFAR, a
simulation pipeline is used to create a realistic estimate of the signal
that can be expected. Currently, these simulations do not include the
effects of RFI. With the construction of empirical models for the RFI
source distributions, we are one step closer to including these effects
in the simulation. Using equation (14), one can sample a realistic
strength of a single RFI source, add the feature to the data and run
the AOFlagger. What is still needed for accurate simulation is to
obtain a likely distribution for the duration that one such source
affects the data. For example, it is neither realistic that all RFI
sources are continuously transmitting nor that they affect only one
sample. The RFI detector is highly depending on the morphology
of the feature in the time-frequency domain. Finally, the coherency
properties of the RFI might be even more important to simulate
correctly, but these have not been explored. However, these have
large implications for observations with high sensitivity. This will
be discussed in the next section.

The derived values for the average lower level of detected RFI,
Sd, show that the AOFlagger has detected a large part of the RFI
that is well below the sample noise. In both sets, Sd is more than
one order of magnitude below the Rayleigh mode. This can be
explained with two of the algorithms it implements. The first one is
the SumThreshold method (Offringa et al. 2010a) that thresholds
on combinations of samples, and is thus able to detect RFI that is
weaker than the sample noise. The second one is the SIR operator
(Offringa et al. 2012a). This operator is not dependent on the sample
amplitude, but flags based on morphology.

6.1 Implications for very long integrations

Faint RFI could impose a fundamental limit on the attainable noise
limit of long integrations. We will analyse the situation for the
LOFAR EoR project. This project will use the LOFAR HBA to
collect on the order of 50–100 night-time observations of 6 h for a
few target fields. The final resolution required for signal extraction
will be about 1 MHz. The project will use about 60 stations, each of
which provides two polarized feeds. This will bring the noise level
in a single 6 h observation in 1 MHz bandwidth to

σeor-night = SEFD (2�t�νNfeedNinterferometers)
− 1

2 ≈ 250 μJy, (27)

where Nfeed = 2 is the number of feeds per antenna and
Ninterferometers = 1

2 60 × 59 is the number of interferometers. There-
fore, after 100 nights the thermal noise level will be 25 μJy.

Because some RFI sources might be stationary, the signals from
these sources will add consistently over time, meaning that the
geometrical phase will be the same every day. Therefore, the amount
that time integration can decrease the flux density of RFI might
be limited. On the other hand, many RFI signals observed in the
LOFAR bands have a limited bandwidth, and the majority of the
detected RFI sources affect only one or a few LOFAR channels of
0.76 kHz. Therefore, frequency averaging will lower the flux density
of the RFI signal. If the frequency range contains only one stationary
RFI source, the strength of this source will go down linearly with
the total bandwidth. If we assume that all channels are affected by
RFI sources and all these sources transmit in approximately one
channel, then the noise addition that is produced by RFI will go
down with the square root of the number of averaged channels. This
is a consequence of the random phase that different RFI sources
have.

In summary, some class of stationary RFI sources are expected
to add consistently over time, polarization and interferometer, but

not over frequency. Therefore, in this case the noise level at which
RFI leakage approximately becomes relevant is given by

σRFI = REFD√
2�ν

, (28)

where REFD is the RFI equivalent flux density at 1 Hz and 1 s
resolution for a single station, in analogue to how the SEFD is de-
fined. This only holds when the observational integrated bandwidth
�ν is substantially higher than the average bandwidth of a sin-
gle RFI source. The empirically found upper limits in this work
are REFDLBA = 18.9–19.3 Jy and REFDHBA = 6.5–6.7 Jy (see
Table 2).

For the EoR project with 1 MHz resolution, equation (28) results
in σRFI ≈ 4.7 mJy. However, the first EoR results of observations
of one day have approximately reached the thermal noise of about
1.7 mJy per 0.2 MHz sub-band (Yatawatta et al. 2013), and the
resulting images show no signs of RFI. This implies that either the
upper limit is far from the actual RFI situation, or equation (28) is
not applicable to most of the RFI that is observed with LOFAR.
In the following section, we will discuss effects that could cause a
reduced contribution of RFI.

6.2 Interference-reducing effects

When integrating data, it is likely that the actual noise limit from
low-level RFI will be significantly lower than the given upper limit,
which was determined at highest LOFAR resolution. There are
several reasons for this: many RFI sources have a variable geometric
phase, because they move or because their path of propagation
changes; many RFI sources will be seen by only a few stations or
are not constant over time; for the shortest baselines at 150 MHz, the
far field starts around 1 km, and some RFI sources will therefore be
in the near field; and finally, a large number of stationary RFI sources
in a uniform spatial distribution will interfere both constructively
and destructively with each other. These arguments are valid only
for interferometric arrays. Global EoR experiments that use a single
antenna will not benefit from these effects, and will still be limited
by low-level RFI.

Fringe stopping interferometers can partly average out RFI
sources. Nevertheless, stationary RFI that is averaged out by fringe
stopping will leave artefacts in the field centre (Offringa et al.
2012b). This is not relevant when observing the North Celestial
Pole – which is one of the LOFAR EoR fields – because no fringe
stopping is applied when observing the NCP. Imaging of the data
will localize the contribution from stationary RFI near the NCP. If
RFI artefacts would show in the image of the NCP field, they can
easily be detected and possibly be removed, or processing could
ignore data near the pole. Because of these arguments, it is a risk
to use the NCP as one of the EoR target fields. At the same time,
this field is useful for analysing the RFI coherency properties. Pre-
liminary analysis of EoR NCP observations of a single night have
almost reached the thermal noise, but do not show leaked RFI at the
pole (Yatawatta et al. 2013, section 4.3).

Because we have assumed 100 per cent of the spectrum is occu-
pied by RFI, our given RFI constraints could be too pessimistic. If
only 10 per cent of the samples are affected by RFI, the expected
value of the leaked RFI level decreases by about 25 per cent, and
if the detected 2.68 per cent true-positives contain all RFI, there is
no leaked RFI at all. With current data, one can only speculate how
much of the electromagnetic spectrum is truly occupied.

Finally, future RFI excision strategies can further enhance detec-
tion accuracy. Once data from a large number of nights are collected,
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it will be possible to detect and excise RFI more accurately. With
the current strategy, it is likely that the LOFAR EoR project will
encounter some RFI on some frequencies when averaging lots of
observing nights, although this still remains to be seen. To mitigate
this leaked RFI, the detection can be executed at higher signal-to-
noise ratio levels. The current results indicate that a lot of RFI does
not add up consistently, and the situation is promising. Considering
the current RFI results, and the availability of further mitigation
steps, we conclude that RFI will likely not be problematic for the
detection of the EoR with LOFAR.
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