349 research outputs found

    Emission-line stars in the LMC: the Armagh survey, and a metacatalogue

    Full text link
    [Aims] Accurate astrometry is required to reliably cross-match 20th-century photographic catalogues against 21st-century digital surveys. The present work provides modern-era identifications and astrometry for the 801 emission-line objects "of stellar appearance" in the Armagh survey (the largest of its nature to date). [Methods] Targets have been individually identified in digital images using the Armagh Atlas and, in most cases, unambiguously matched to entries in the UCAC astrometric catalogues. [Results] Astrometry with sub-arcsecond precision is now available for all the major photographic spectroscopic surveys of the LMC. The results are used to compile an annotated metacatalogue of 1675 individual, spectroscopically identified candidate H-alpha-emission stars, including detailed cross-matching between catalogues, and resolving many (though not all) identification ambiguities in individual primary sources

    Improved astrometry for the Bohannan & Epps catalogue

    Full text link
    Aims: Accurate astrometry is required to reliably cross-match 20th-century catalogues against 21st-century surveys. The present work aims to provide such astrometry for the 625 entries of the Bohannan & Epps (BE74) catalogue of Hα\alpha emission-line stars. Methods: BE74 targets have been individually identified in digital images and, in most cases, unambiguously matched to entries in the UCAC4 astrometric catalogue. Results: Sub-arcsecond astrometry is now available for almost all BE74 stars. Several identification errors in the literature illustrate the perils of relying solely on positional coincidences using poorer-quality astrometry.Comment: 3 pages, 1 figure. Accepted in A&

    A reappraisal of parameters for the putative planet PTFO 8-8695b and its potentially precessing parent star

    Get PDF
    Published photometry of fading events in the PTFO 8-8695 system is modelled using improved treatments of stellar geometry, surface intensities, and, particularly, gravity darkening, with a view to testing the planetary-transit hypothesis. Variability in the morphology of fading events can be reproduced by adopting convective-envelope gravity darkening, but near-critical stellar rotation is required. This leads to inconsistencies with spectroscopic observations; the model also predicts substantial photometric variability associated with stellar precession, contrary to observations. Furthermore, the empirical ratio of orbital to rotational angular momenta is at odds with physically plausible values. An exoplanet transiting a precessing, gravity-darkened star may not be the correct explanation of periodic fading events in this system

    Rapid rotators revisited: absolute dimensions of KOI-13

    Get PDF
    We analyse Kepler light-curves of the exoplanet KOI-13b transiting its moderately rapidly rotating (gravity-darkened) parent star. A physical model, with minimal ad hoc free parameters, reproduces the time-averaged light-curve at the ca. 10 parts per million level. We demonstrate that this Roche-model solution allows the absolute dimensions of the system to be determined from the star's projected equatorial rotation speed, v(e)sin(i), without any additional assumptions; we find a planetary radius 1.33+/-0.05 R(Jup), stellar polar radius 1.55+/-0.06 R(sun), combined mass M(*) + M(P) (\simeq M*) = 1.47 +/- 0.17 M(sun), and distance d \simeq 370+/-25 pc, where the errors are dominated by uncertainties in relative flux contribution of the visual-binary companion KOI-13B. The implied stellar rotation period is within ca. 5% of the non-orbital, 25.43-hr signal found in the Kepler photometry. We show that the model accurately reproduces independent tomographic observations, and yields an offset between orbital and stellar-rotation angular-momentum vectors of 60.25+/-0.05 degrees.Comment: Accepted in MNRA

    High-precision stellar limb-darkening in exoplanetary transits

    Get PDF
    Characterization of the atmospheres of transiting exoplanets relies on accurate measurements of the extent of the optically thick area of the planet at multiple wavelengths with a precision \lesssim100 parts per million (ppm). Next-generation instruments onboard the James Webb Space Telescope (JWST) are expected to achieve \sim10 ppm precision for several tens of targets. A similar precision can be obtained in modelling only if other astrophysical effects, including the stellar limb-darkening, are accounted for properly. In this paper, we explore the limits on precision due to the mathematical formulas currently adopted to approximate the stellar limb-darkening, and to the use of limb-darkening coefficients obtained either from stellar-atmosphere models or empirically. We propose a new limb-darkening law with two coefficients, `power-2', which outperforms other two-coefficient laws adopted in the literature in most cases, and particularly for cool stars. Empirical limb-darkening based on two-coefficient formulas can be significantly biased, even if the light-curve residuals are nearly photon-noise limited. We demonstrate an optimal strategy to fitting for the four-coefficients limb-darkening in the visible, using prior information on the exoplanet orbital parameters to break some of the degeneracies that otherwise would prevent the convergence of the fit. Infrared observations taken with the James Webb Space Telescope (JWST) will provide accurate measurements of the exoplanet orbital parameters with unprecedented precision, which can be used as priors to improve the stellar limb-darkening characterization, and therefore the inferred exoplanet parameters, from observations in the visible, such as those taken with Kepler/K2, JWST, other past and future instruments

    A detailed X-ray investigation of zeta Puppis IV. Further characterization of the variability

    Get PDF
    Previously, the X-ray emission of zeta Puppis was found to be variable with light curves harbouring "trends" with a typical timescale longer than the exposure length. The origin of these changes was proposed to be linked to large-scale structures in the wind, but further characterization of the variability at high energies was needed. Since then, a number of new X-ray observations have become available. Furthermore, a cyclic behaviour with a 1.78d period was identified in long optical photometric runs, which is thought to be associated with the launching mechanism of large-scale wind structures. We analysed these new X-ray data, revisited the old data, and compared X-ray with optical data, including when simultaneous. We found that the behaviour in X-rays cannot be explained in terms of a perfect clock because the amplitude and shape of its variations change with time. For example, zeta Puppis was much more strongly variable between 2007 and 2011 than before and after this interval. Comparing the X-ray spectra of the star at maximum and minimum brightness yields no compelling difference beyond the overall flux change: the temperatures, absorptions, and line shapes seem to remain constant, well within errors. The only common feature between X-ray datasets is that the variation amplitudes appear maximum in the medium (0.6-1.2keV) energy band. Finally, no clear and coherent correlation can be found between simultaneous X-ray and optical data. Only a subgroup of observations may be combined coherently with the optical period of 1.78d, although the simultaneous optical behaviour is unknown. The currently available data do not reveal any obvious, permanent, and direct correlation between X-ray and optical variations. The origin of the X-ray variability therefore still needs to be ascertained, highlighting the need for long-term monitoring in multiwavelengths, i.e. X-ray, UV, and optical.Comment: accepted for publication by A&

    A new look at Spitzer primary transit observations of the exoplanet HD189733b

    Get PDF
    Blind source separation techniques are used to reanalyse two exoplanetary transit lightcurves of the exoplanet HD189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6μ\mum during the "cold" era. These observations, together with observations at other IR wavelengths, are crucial to characterise the atmosphere of the planet HD189733b. Previous analyses of the same datasets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent way is novel in the literature. The advantage of our reanalyses over previous work is that we do not have to make any assumptions on the structure of the unknown instrumental systematics. Such "admission of ignorance" may result in larger error bars than reported in the literature, up to a factor 1.61.6. This is a worthwhile trade-off for much higher objectivity, necessary for trustworthy claims. Our main results are (1) improved and robust values of orbital and stellar parameters, (2) new measurements of the transit depths at 3.6μ\mum, (3) consistency between the parameters estimated from the two observations, (4) repeatability of the measurement within the photometric level of 2×104\sim 2 \times 10^{-4} in the IR, (5) no evidence of stellar variability at the same photometric level within 1 year.Comment: 43 pages, 18 figure

    Amplitude variability in satellite photometry of the non-radially pulsating O9.5V star zeta Oph

    Full text link
    We report a time-series analysis of satellite photometry of the non-radially pulsating Oe star zeta Oph, principally using data from SMEI obtained 2003--2008, but augmented with MOST and WIRE results. Amplitudes of the strongest photometric signals, at 5.18, 2.96, and 2.67/d, each vary independently over the 6-year monitoring period (from ca. 30 to <2 mmag at 5.18/d), on timescales of hundreds of days. Signals at 7.19/d and 5.18/d have persisted (or recurred) for around two decades. Supplementary spectroscopic observations show an H-alpha emission episode in 2006; this coincided with small increases in amplitudes of the three strongest photometric signals.Comment: MNRAS, in pres

    A CNO Dichotomy among O2 Giant Spectra in the Magellanic Clouds

    Get PDF
    From a survey of the 3400 Å region in the earliest O-type spectra, we have found that two of the four O2 giants observed in the Large Magellanic Cloud have O IV lines there that are stronger than the N IV lines, while the other two have the opposite. A Small Magellanic Cloud counterpart also has N IV stronger than O IV. Inspection of the blue spectra of these stars shows that the former pair have weaker N lines in all ionization states (III, IV, and V) present as well as lines of C IV λ4658, while the latter three have stronger N lines and greater He/H. Space ultraviolet observations of two of the N-strong stars show N V wind profiles substantially stronger than those of C IV, while in the N-weak stars the C IV features are equal to or stronger than the N V. The N-strong stars are now reclassified as ON2 III(f*), newly defining that category. These characteristics strongly suggest a larger fraction of processed material in the atmospheres of the ON2 stars, which we confirm by modeling the optical spectra. In the context of current models, it is in turn implied that the ON2 stars are in a more advanced evolutionary state than the others, and/or that they had higher initial rotational velocities. The recent formulation of the effects of rotation on massive stellar evolution introduces an additional fundamental parameter, which the CNO abundances are in principle able to constrain. We present some illustrative comparisons with current Geneva evolutionary models for rotating massive stars. It is possible that these very hot, nitrogen-rich objects are products of homogeneous evolution. Our results will provide motivation for further physical modeling of the atmospheres and evolutionary histories of the most massive hot stars.Fil: Walborn, Nolan Revere. Space Telescope Science Institute; Estados UnidosFil: Morrell, Nidia Irene. Las campanas observatory; ChileFil: Howarth, Ian D.. University College London; Estados UnidosFil: Crowther, Paul A.. University of Sheffield; Reino UnidoFil: Lennon, Daniel J.. Isaac Newton Group of Telescopes; EspañaFil: Massey, Philip. Lowell Observatory; Estados UnidosFil: Arias, Julia Ines. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentin

    Polarization due to rotational distortion in the bright star Regulus

    Get PDF
    This is the full published article (retrieved from the 6 months post-publication posting on arXiv) including the Methods and Supplementary Information sections: 33 pages, 10 figures, 8 tablesPolarization in stars was first predicted by Chandrasekhar [1] who calculated a substantial linear polarization at the stellar limb for a pure electron-scattering atmosphere. This polarization will average to zero when integrated over a spherical star but could be detected if the symmetry is broken, for example by the eclipse of a binary companion. Nearly 50 years ago, Harrington and Collins [2] modeled another way of breaking the symmetry and producing net polarization - the distortion of a rapidly rotating hot star. Here we report the first detection of this effect. Observations of the linear polarization of Regulus, with two different high-precision polarimeters, range from +42 parts-per-million (ppm) at a wavelength of 741 nm to -22 ppm at 395 nm. The reversal from red to blue is a distinctive feature of rotation-induced polarization. Using a new set of models for the polarization of rapidly rotating stars we find that Regulus is rotating at 96.5(+0.6/-0.8)% of its critical angular velocity for breakup, and has an inclination greater than 76.5 degrees. The rotation axis of the star is at a position angle of 79.5+/-0.7 degrees. The conclusions are independent of, but in good agreement with, the results of previously published interferometric observations of Regulus [3]. The accurate measurement of rotation in early-type stars is important for understanding their stellar environments [4], and course of their evolution [5].Peer reviewe
    corecore