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Abstract

Characterization of the atmospheres of transiting exoplanets relies on accurate measurements of the extent of the
optically thick area of the planet at multiple wavelengths with a precision 100 parts per million (ppm). Next-
generation instruments onboard the James Webb Space Telescope (JWST) are expected to achieve ∼10 ppm
precision for several tens of targets. A similar precision can be obtained in modeling only if other astrophysical
effects, including the stellar limb-darkening, are properly accounted for. In this paper, we explore the limits on
precision due to the mathematical formulas currently adopted to approximate the stellar limb-darkening, and due to
the use of limb-darkening coefficients obtained either from stellar-atmosphere models or empirically. We
recommend the use of a two-coefficient limb-darkening law, named “power-2,” which outperforms other two-
coefficient laws adopted in the exoplanet literature in most cases, and particularly for cool stars. Empirical limb-
darkening based on two-coefficient formulas can be significantly biased, even if the light-curve residuals are nearly
photon-noise limited. We demonstrate an optimal strategy to fitting for the four-coefficient limb-darkening in the
visible, using prior information on the exoplanet orbital parameters to break some of the degeneracies that
otherwise would prevent the convergence of the fit. Infrared observations taken with the JWST will provide
accurate measurements of the exoplanet orbital parameters with unprecedented precision, which can be used as
priors to improve the stellar limb-darkening characterization, and therefore the inferred exoplanet parameters, from
observations in the visible, such as those taken with Kepler/K2, the JWST, and other past and future instruments.

Key words: methods: observational – planetary systems – planets and satellites: atmospheres – planets and
satellites: fundamental parameters – techniques: photometric – techniques: spectroscopic

1. Introduction

Observations of transits offer the most accurate means of
measuring exoplanet sizes and orbital inclinations, as well as
mean stellar densities and, if combined with radial-velocity
information, system masses. Transits are revealed through
periodic drops in the stellar flux, due to the partial occultation
of the stellar disk by the planet for a portion of its orbit. The
amplitude of the flux decrement is primarily determined by the
size of the planet relative to the star, but also depends on the
location of the occulted area of the stellar disk and the wavelength
observed, because of limb-darkening (the radial decrease in
specific intensity). Inadequate treatment of limb-darkening may
give rise to 10% errors in exoplanetary radii inferred from
transits observed at UV or visible wavelengths, and accurate
modeling is paramount in the study of exoplanetary atmospheres,
where differences of 10–100 parts per million (ppm) in transit
depths at different wavelengths can be attributed to the
wavelength-dependent optical depth of the external layers of the
planet, rather than to stellar properties.

Stellar-atmosphere models are commonly used to predict the
limb-darkening profiles, but empirical estimates are desirable,
both to test the stellar models and to reduce potential biases in
transit depths due to errors in the theoretical models or to other
second-order effects, such as stellar activity, granulation,
gravity darkening, etc.

Other than for the Sun, the surface of which can be directly
observed in great detail, techniques to map the stellar intensity
distributions rely mainly on optical interferometry (e.g.,
Hestroffer 1997; Lane et al. 2001; Wittkowski et al. 2001;
Aufdenberg et al. 2005) and microlensing (e.g., Witt 1995;
Fields et al. 2003; Dominik 2004; Zub et al. 2011). The former

is useful for only a very limited number of stars with large
angular diameters, while the latter is limited by the low
occurrence rate and non-repeatability of the microlensing
events. Eclipsing binaries offer another route to mapping
stellar surfaces, but accurate modeling of these systems is
handicapped by complicating factors (gravity darkening,
reflection effect, tidal distortionK), and a degree of redundancy
between limb-darkening and radii. These issues are much
reduced in most star+exoplanet systems, thanks to the smaller
mass and size of the planetary companions (Wilson &
Devinney 2002; Loeb & Gaudi 2003; Pfahl et al. 2008).
In this paper, we explore the potential biases in high-

precision exoplanet spectroscopy using approximate stellar
limb-darkening parameterizations, with coefficients obtained
either from stellar-atmosphere models or empirically.

1.1. Structure of the Paper

Section 2 reviews the limb-darkening laws most commonly
adopted in the exoplanet literature, the proposed power-2 law, and
discusses the current approaches to obtain theoretical and
empirical limb-darkening coefficients. Section 3 describes how
we simulate light-curves from spherical-atmosphere models, and
Section 4 reports the results of our analyses. In particular,
Section 4.1 outlines the main differences between plane-parallel
and spherical stellar-atmosphere models; in Sections 4.2 and 4.3
we analyze the precision with which different limb-darkening
laws describe the intensity profile and the transit morphology, and
derive the correct transit depth. Section 4.4 describes the
equivalent analysis for the case of empirical limb-darkening
coefficients, (i.e., allowed as free parameters in the light-curve fit).
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Section 4.5 then focuses on the potential errors in “narrow-
band exoplanet spectroscopy” over short wavelength ranges,
specifically in the context of Hubble Space Telescope (HST)/
WFC3 observations. Section 5 examines the ability to fit a set
of transit parameters and limb-darkening coefficients on transit
light-curves, and develops an optimal strategy to maximize the
accuracy in the estimated transit parameters and limb-
darkening coefficients in the visible, if infrared observations
are also available. Finally, Section 6 discusses the results of our
analysis, with emphasis on the synergies between the James
Webb Space Telescope (JWST) and Kepler, and on future
surveys.

2. Describing Stellar Limb-darkening

2.1. Limb-darkening Parameterizations

In exoplanetary studies, the stellar limb-darkening profile is
typically described by an analytical function I ml ( ), where I
denotes the specific intensity, cosm q= , θ is the angle between
the surface normal and the line of sight, and the λ subscript refers
to the monochromatic wavelength or effective wavelength of the
passband at which the specific intensities are given. For circular
symmetry, r1 2m = - , where r is the projected radial co-
ordinate normalized to a reference radius.

Numerous functional forms to approximate I ml ( ) have been
proposed in the literature. In the study of exoplanetary transits, the
most commonly used of these limb-darkening “laws” are:

1. the quadratic law (Kopal 1950),
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2. the square-root law (Diaz-Cordoves & Gimenez 1992),
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3. the four-coefficient law (Claret 2000),
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hereinafter referred to as “claret-4.” The quadratic, square-root,
and claret-4 laws rely on linear combinations of fixed powers of
μ. In this paper, we advocate an alternative two-coefficient law
incorporating an arbitrary power of μ which, to the best of our
knowledge, has not previously been considered in the
exoplanet literature (and which we initially constructed
independently):

4. the “power-2” law (Hestroffer 1997),
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We find that this form offers more flexibility and a better match
to model-atmosphere limb-darkening than do other two-
coefficient forms (Section 4.2). The claret-4 law can provide
a more accurate approximation to model-atmosphere limb-
darkening than other forms, but at the expense of using a larger
number of coefficients. We note that the quadratic and square-
root laws are subsets of the claret-4 prescription, with

Figure 1. Left panel: illustration of a plane-parallel atmosphere. Right panel: illustration of a spherical-geometry atmosphere (the scale is exaggerated for easier
visualization). Note that, differently from the plane-parallel case, the line of sight for the chosen angle μ does not intersect the shell corresponding to the radial optical
depth 1t = .

Table 1
Input Parameters (Effective Temperature, Gravity) for Solar-abundance

PHOENIX Stellar-atmosphere Models Adopted for the Simulations

Sp. type Teff glog [M/H]

M5 V 3084 5.25 0.0
M0 V 3759 4.75 0.0
F0 V 7250 4.25 0.0

Note.Default values for other parameters are specified in Allard et al. (2012).
The corresponding spectral types are based on the calibration reported in Gray
& Corbally (2009).
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a a 01 3= = , a u u22 1 2= + , a u4 2= - (quadratic) and
a a 03 4= = (square-root). The power-2 form is a subset only
for 1 2a = , 1, 3 2, or2.

2.2. Intensity Distributions: Plane-parallel Versus Spherical

Theoretical limb-darkening coefficients can be obtained from
stellar-atmosphere models, by fitting a parametric law (such as
Equations (1)–(4)) to detailed numerical evaluations of I ml ( )
using some suitable numerical technique—typically least squares,
though detailed numerical results depend on both the method
chosen and the data sampling (e.g., Heyrovský 2007; Claret 2008;
Howarth 2011a). Tables of theoretical limb-darkening coeffi-
cients as a function of stellar parameters (usually the effective
temperature, gravity, and metallicity) have been published by
several authors for various photometric passbands. Most
calculations are based on plane-parallel atmosphere models
(Claret 2000, 2004, 2008; Sing 2010; Howarth 2011b; Claret
et al. 2012, 2013; Reeve & Howarth 2016), but some authors
have considered spherical geometry, claiming, in some cases,
noteworthy improvements compared to the use of plane-parallel
models (Claret & Bloemen 2011; Hayek et al. 2012; Neilson &
Lester 2013a, 2013b; Claret et al. 2014; Magic et al. 2015).

These spherical models show a characteristic steep drop-off in
intensity at small, but finite μ (see, e.g., Figure 3). The explanation
for this drop-off is straightforward (Figure 1).

In a plane-parallel atmosphere, the optical depth always
reaches unity somewhere along the line of sight, even at grazing
incidence. The limb of the star is, consequently, geometrically
well-defined (and wavelength independent), and the intensity at
the limb is comparable to the intensity at the center of the disk, to
within a factor of a few.

In spherical geometry, in contrast, there are no constant angles μ
at which the characteristic rays intersect the shells; instead they
vary as a function of radius. For technical reasons the emergent
intensities are usually specificied as functions of the angle as
measured at the outer boundary of the model atmosphere, which is
originally set by the modeller at an arbitrary physical radius or
reference optical depth, subject only to the condition that it has a
suitably small opacity and emissivity even at the cores of strong
lines. The outermost layer of the model atmosphere, corresponding
to 0m = in this reference frame, is therefore always optically thin
and does not correspond to what would be observed as “the”
stellar radius in investigations involving interferometric imaging,

lunar occultation, or exoplanetary transits. Furthermore, the rapid
changes in I ml ( ) that arise at small μ in spherical models are,
inevitably, not well approximated by any of the standard
parametric laws developed to represent results of plane-parallel
models, because the intensity does not converge to zero at any
given radius (see, e.g., Figure 1 of Neilson et al. 2017).
Wittkowski et al. (2004) and Espinoza & Jordán (2015)

therefore suggested to re-define 0m = to a radius outside of
which almost no flux is observed, i.e., at the inflection point of
the intensity profile so that the tail-like extension originating from
the optically thin outer layers is excluded from fitting the limb-
darkening profile. The radius is reasonably well defined by the
point at which the gradient dI dm m( ) , or almost equivalently
dI r dr∣ ( ) ∣, reaches a maximum. Wittkowski et al. (2004) found
that this radius corresponded closely to the Rosseland radius,
defined by a Rosseland optical depth along the normal

r 1Rosst =( ) , for the M giant models they presented. Close to
the limb, however, one can expect to observe significant emission
as long as the line-of-sight optical depth is at least of order unity.
Additionally, in the context of modeling exoplanetary transits, the
projected radius for which the total line-of-sight optical depth
within the observed wavelength band becomes one should be
considered. In Wittkowski et al. (2004) the differences between
radial and line-of-sight optical depths at a given physical depth
were relatively modest because the giant-star atmosphere they
modeled has a large radial extension with corresponding large
angles 0.3m = . Furthermore, they studied the emergent
intensities in the K band, which has relatively smaller mean
opacity than the Rosseland mean, thus partly cancelling the effect
of the off-normal incidence.
In this paper, we test empirically the choice of stellar radius,

based on the ratios between best-fit and input transit depths (see
Section 4.1), finding different values for the best renormaliza-
tion radius in different wavelength bands (corresponding to the
different band-mean opacities). But these radii are larger
throughout than the respective r 1Rosst =( ) , and correspond to
μ=0.0386, 0.049, and 0.0738 for the three models displayed
in Figure 3, confirming the effect of the off-normal incidence
on the emission near the limb.

2.3. Limitations on Empirical Limb-darkening Coefficients

Empirical limb-darkening coefficients can be inferred by
fitting a parametric model to an observed transit light-curve

Figure 2. Throughputs of the instruments adopted for the simulations; from visible to mid-infrared, STIS/G430L (purple), STIS/G750L (blue), WFC3/G141 (green),
IRAC/ch1 (yellow) and IRAC/ch4 (red).
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(Mandel & Agol 2002; Soutworth et al. 2004; Pál 2008) Two-
coefficient laws are typically used for this purpose (e.g.,
Soutworth 2008; Claret 2009; Kipping & Bakos 2011a, 2011b;

Hébrard et al. 2013; Müller et al. 2013), as parameter
degeneracies hamper convergence when fitting higher-order
models (e.g., the claret-4 characterization).
Measuring empirical limb-darkening coefficients is impor-

tant to test the validity of the stellar-atmosphere models and, if
results are sufficiently accurate, to select the best theoretical
models. Furthermore, fixing limb-darkening coefficients at
incorrect theoretical values can significantly bias other fitted
transit parameters, leading to incorrect inferences about
planetary sizes and masses, or confusing the spectral signature
of a planetary atmosphere (Csizmadia et al. 2013). In active
stars, the presence of dark or bright spots on the surface can
change the “effective” limb-darkening coefficients relative to
the unperturbed case, as well as the inferred stellar parameters
adopted to compute the theoretical coefficients (Ballerini et al.

Figure 3. Top to bottom: angular intensity distributions for the M5 V, M0 V, and F0 V models of Table 1. Symbols represent spherical-geometry, passband-integrated
intensities for STIS/G430L (purple squares), STIS/G750L (blue “

*
”), WFC3/G141 (green “+”), IRAC/ch1 (yellow “x”) and IRAC/ch4 (red dots); the

corresponding plane-parallel intensities are shown as continuous lines of the same colors. The right-hand panels show the limb region (0.1�μ�0.0) at a larger scale
and the μ angle corresponding to r 1Rosst =( ) .

Table 2
Input Transit Parameters Adopted in Simulations

p aR i (°) e b P (days)

0.15 9.0 90.0 0 0.0 2.218573
0.15 9.0 86.81526146 0 0.5 2.218573

Note.Transit parameters are similar to those of HD189733b. p R Rp *= is the
ratio of planet-to-star radii, a a RR *= the orbital semimajor axis in units of the
stellar radius, i the orbital inclination, e the eccentricity, b a icosR=( ) the impact
parameter, and P the orbital period.

4
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2012; Csizmadia et al. 2013). Other light-curve distortions may
arise from gravity darkening in fast-rotating stars (von
Zeipel 1924; Barnes 2009; Claret et al. 2012), stellar
oscillations (Broomhall et al. 2009; Kjeldsen & Bedding 2011),
granulation (Chiavassa et al. 2017), beaming (Zucker et al.
2007; Shporer et al. 2012), ellipsoidal variations (Pfahl et al.
2008; Welsh et al. 2010), reflected light (Borucki et al. 2009;
Snellen et al. 2009), planetary thermal emission (Kipping &

Tinetti 2010), or exomoons (Kipping 2009a, 2009b; Sartoretti
& Schneider 1999). The photometric amplitudes of such
distortions can be up to ∼100ppm.

3. Simulated Transit Light Curves

In order to investigate the consequences of various approxima-
tions to limb-darkening, we calculated “exact” synthetic transit
photometry as a reference, using new model-atmosphere
intensities coupled to an accurate numerical integration scheme
for the light-curves.

3.1. Stellar Models

We generated three representative model atmospheres using
the PHOENIX simulator (Allard et al. 2012); input parameters
are summarized in Table 1. These models are intended to
bracket the range in effective temperature of known exoplanet
host stars, and embrace ∼98% of those listed in the
exoplanet.eu database (Schneider et al. 2011) as of 2016
December12.
For each stellar model, I ml ( ) profiles were calculated in both

plane-parallel and spherical geometries. In the former case,
intensities were calculated at 96 values of μ, chosen as the anchor
points for a Gaussian-quadrature integration; the intervals

Figure 4. Top panel: Plane-parallel (black “+”) and spherical (black line) model-atmosphere intensities vs. μ for the M5 V star in the WFC3/G141 passband.
Parametric limb-darkening functions fitted to plane-parallel intensities (theoretical models) are quadratic (green), square-root (yellow), claret-4 (red), and power-2
(blue) laws. Bottom panel: large-scale plots of residuals of parametric limb-darkening laws for model-atmosphere intensities in the plane-parallel and spherical
geometries (continuous and dashed lines, respectively).

Table 3
Measured Ranges of Apparent Stellar Radius, r0, over Five Instrument

Passbands for the Three Stellar Models; Corresponding
Percentage Variations in Transit Depth, p R R ;p

2 2
*= ( )

and Absolute Variations, Evaluated at p 0.15input =

Sp. type,
(Teff , glog ) r0 range

p p

p

expected
2

input
2

input
2

- p pexpected
2

input
2-

p 0.15=∣

M5 V,
(3084, 5.25)

0.99942–0.99953 0.09–0.12% 21–26ppm

M0 V,
(3759, 4.75)

0.99908–0.99919 0.16–0.18% 37–41ppm

F0 V,
(7250, 4.25)

0.99769–0.99794 0.41–0.46% 93–104ppm
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i i i1m m mD = -+∣ ∣ vary in the range 7 10 1.6 104 2´ - ´- -

and are smallest for 0m ~ and ∼1. In spherical geometry, the μ
values were determined by the properties of the model atmosphere,
and the number of grid points is model-dependent (169–177 in the
cases considered here); the limb is the most finely sampled region,
down to 6 10 5mD ~ ´ - . Passband-integrated intensities were
calculated for five instruments which have been widely used in the
field of exoplanet spectroscopy, from the visible to mid-infrared
wavelengths: the STIS/G430L, STIS/G750L and WFC3/G141
gratings onboard the HST,3 and the IRAC photometric channels 1
and 4 onboard Spitzer. The throughputs of these instruments are
shown in Figure 2, and the corresponding plane-parallel and
spherical-model intensities are shown in Figure 3.

3.2. Computing Transit Light Curves from Spherical
Model Atmospheres

We generated two sets of “exact” transit light-curves for the
exoplanet-system parameters reported in Table 2. Each set consists
of fifteen transit light-curves, one for each stellar model and
instrument passband, using the spherical-geometry intensities; the
sets differ only in the impact parameter (or, equivalently, the
orbital inclination). Each light-curve contains 2001 data points
with 8.4 s sampling time, over a ∼4.7 hr interval centered on the
mid-transit (the total duration of the transits is ∼2 hr, with the
central transit being ∼10 min longer).

The orbital parameters determine z, the sky-projected star–
planet separation in units of the stellar radius at any given time; for
a circular orbit

z t a
t t

P
i1 cos

2
sin , 5R

2 0 2p
= -

-⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( )

where aR is the semimajor axis in units of the stellar radius, P is
the orbital period, i is the inclination relative to the sky, and t0
is the time of conjunction.

The fraction of stellar light occulted by the planet is, for a given
intensity profile, a function F p z t,( ( )), where p is the ratio of
planet-to-star radii. Instead of using an analytical function
(requiring a numerical approximation to the intensity profile), we
computed the light-curve by direct integration of the occulted
stellar flux, using our purpose-built “tlc” algorithm. The algorithm:

1. divides the sky-projected stellar disk into a user-defined
number of annuli, n, with uniform radial separa-
tion, dr n1 ;=

2. evaluates the intensity at the central radius of each annulus,
I ri( ), where r i n0.5i = +( ) for i n0 ... 1= - , interpo-
lating in μ from the input stellar-intensity profile

(and r 1i i
2m= - );

3. evaluates the flux from each annulus, F I r r dr2i i ip= ´( ) ,
and hence the total stellar flux, F Fi

n
i0

1
* = å =

- .
4. The occulted flux is then calculated as F p z,occ =( )

F f ri
n

i z p i0
1

,å =
- ( ), where f rz p i, ( ) is the fraction of

circumference of each annulus covered by the planet,
given by

f r

r z p

zr
z p r z p

r z p r z p
r p z

1
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2
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1
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5. whence the normalized flux is F p z F F, 1 occ *= -( ) .

Before calculating the actual transit light-curves from the spherical
model intensities, we tested the accuracy of the algorithm using a
wide range of parametric intensity profiles as input, with the same
grid of μ values as the spherical models, comparing the resulting
light-curves to those from analytical calculations. We found that,
with n 100, 000= annuli, the maximum differences between tlc
and analytical light-curves were 5 10 7< ´ - in the worst-case
scenarios—negligible compared to the minimum uncertainties that
can be obtained with any current or forthcoming instrument.

4. Modeling Transit Light Curves

In empirical studies, it is generally convenient to analyze
observed transit light-curves using parameterized models in order
to fit for the unknown transit parameters and/or limb-darkening
coefficients. To mimic this observational approach we employed
PYLIGHTCURVE,4 our pipeline dedicated to the fast computation of
model transit light-curves with a parametric limb-darkening profile.
The power-2 parameterization (Equation (4)) was implemented in
the code for this work. Based on our proposal, the power-2 law has
been implemented also in the BATMAN code (Kreidberg 2015).

4.1. Plane-parallel Versus Spherical
Limb-darkening Models

As outlined in Section 2.2, discrepancies between the plane-
parallel and spherical limb-darkening models are larger at smaller
μ (i.e., closer to the stellar limb), solely because of the manner in
which μ is defined, at least in the first step, for the spherical
models. The spherical models present a steep drop-off in the
normalized intensity I I 1m( ) ( ), approaching zero at some m> 0,
while for the plane-parallel models the intensity is significantly
greater than zero for all μ (see Figure 3).
It is reasonable to suppose that the “photometric” stellar radius

relevant to transit studies is better represented by the projected
radius of the intensity drop-off than by 0m = , the arbitrary
uppermost layer in the atmospheric model. As a pragmatic
approach, we assign this projected photometric radius to the point
in the intensity distribution at which the gradient dI dm m( )
reaches a maximum (estimated as the mean μ value between the
two consecutive μ values in the model with the maximum
difference quotient, I Ii i i i1 1m m m m- -+ +∣ ( ) ( )∣ ∣ ∣). The

corresponding radius, r 10 0
2m= - , hereinafter called the

“apparent” radius, is the ratio between the stellar photometric
radius and the radius of the outermost layer in the model. Our
approach is similar to what is suggested by Wittkowski et al.
(2004) and Espinoza & Jordán (2015), but here we compute the
photometric radius for each passband, while they calculate one
wavelength-averaged photometric radius.

3 The Kepler passband is similar to the combined STIS passbands, and the
results for the STIS passbands are therefore a good proxy for Kepler. 4 https://github.com/ucl-exoplanets/pylightcurve
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With this working definition, the best-fit model parameters for
any of our simulated transit light-curves are expected to deviate
from their input values according to:

p
p

r
7expected

2 input

0

2


⎛
⎝⎜

⎞
⎠⎟ ( )

a
a

r
8R

R
,expected

,input

0
 ( )

i i . 9expected input ( )

Table 3 reports the ranges of r0 over the five instrument
passbands for the given stellar model, the corresponding
percentage variation in transit depth, p R Rp

2 2
*= ( ) , and the

absolute variation evaluated at p 0.15input = . In the analytical
approximations represented by Equations (7), (8), we find the
apparent stellar radius to be systematically smaller than the radius

of the uppermost layer of these models by 0.05–0.1% for the M
dwarfs, and up to ∼0.2% for the F0-star model; the corresp-
onding percentage errors in transit depths are about twice as

Figure 5. Top panel: differences between the best-fit and the input transit depths for the edge-on transits in front of the M5 V model, using theoretical quadratic
(green, upward triangles), square-root (yellow, downward triangles), claret-4 (red diamonds), and power-2 (blue circles) limb-darkening coefficients; the expected
values (Equations (7)) are indicated with black “+.” Middle, bottom panels: the same for the M0 V and F0 V models.

Table 4
Parameters of the Gaussian Priors Adopted in Section 5.3

aRm ( ) aRs ( ) im ( ) is ( )
b=0 9.0042 0.004 90 0.18
b=0.5 9.0042 0.006 86.81526146 0.01

Note. aRm ( ) and im ( ) are the set to the expected transit parameter values, aRs ( )
and is ( ) are the error bars obtained from the corresponding light curves in the
IRAC/ch4 passband, with 100 ppm noise level, 8.4 s sampling time, when
fitting for p, aR, i, normalization factor, and power-2 limb-darkening
coefficients.
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large. For the case of a transiting hot Jupiter (p=0.15), the
discrepancies in transit depth are at the level of ∼20, 40, and
100ppm for the two M dwarfs and for the F0 model,
respectively. The discrepancies measured for the F0 model
currently represent practical upper limits for exoplanet host stars,
given that ∼99% of the current population are cooler, and hence
have less extended atmospheres (for given glog ). The wave-
length-dependence of the apparent radius is negligible over the
parameter space explored here, with a peak-to-peak amplitude of
11ppm, in transit depth, from visible to mid-infrared wave-
lengths in the worst-case scenario (see Table 3).

4.2. Accuracy of the Theoretical Limb-darkening Laws

We fitted the limb-darkening laws to the plane-parallel intensity
profiles by adopting a simple least-squares method in the fits. We
checked, both by using subsets of the precalculated intensity grids
and interpolating at different angles, that similar results would be
obtained using a uniform sampling in μ. Figure 4 shows the
corresponding best-fit models, hereinafter referred as “theoretical”
limb-darkening models, and their residuals, for the case of the
M5V observed in the WFC3 passband. The full list of models and
the relevant residuals are reported in Figure 22 (Appendix A). The
power-2 law (Equation (4)) outperforms the other two-coefficient
laws at describing the stellar limb-darkening of all stars observed at
near to mid-infrared wavelengths with the HST/WFC3 and
Spitzer/IRAC instruments; in some cases, the power-2 model
outperforms even the corresponding claret-4 one. At visible
wavelengths, the square-root and power-2 models have compar-
able success, while the claret-4 models fit best. The average errors
in specific intensity predicted by the power-2 models are in the
range 0.1%–1.0%, with a maximum error up to ∼5%–7% for the
F0V model in the visible passbands. The claret-4 models are more
uniformly robust among all the configurations, with average errors
in the range 0.05%–0.6% and maximum errors <4%. The
quadratic models are the least accurate of those tested, with
average errors in the range 1%–6% and maximum errors of up to
25% (for the M0V model in the WFC3 passband).

4.3. Transit Models with Theoretical
Limb-darkening Coefficients

We measured the potential biases in the model transit depths by
fixing the limb-darkening coefficients at the theoretical values
obtained from the plane-parallel stellar-atmosphere models and
fitting the exact light-curves described in Section 3.2. The free
parameters in the fit were p, the ratio of planet-to-star radii, aR, the
orbital semimajor axis in units of the stellar radius, and i, the
orbital inclination. We used a Nelder–Mead minimization
algorithm to find the values of these parameters which minimizes
the residuals between the model fits and the exact light-curves.
We then carried out Markov chain Monte Carlo (MCMC) runs
with 300,000 iterations to assess the robustness of the point
estimates. Unlike previous investigations reported in the literature
(e.g., Csizmadia et al. 2013), we seek to isolate the potential biases
arising from the analysis method, and particularly the use of
simplified geometry and a parameterization to characterize the
stellar limb-darkening. No other astrophysical sources of error are
considered in this study.
Figure 5 illustrates the differences between the best-fit transit

depths and input values for i 90 ;=  the expected values (from
Equations (7), (8)) are also indicated. For all stellar models, the
results are less dependent on the parametric law at longer
wavelengths; this is to be expected, since the limb-darkening is
smaller at longer wavelengths. In particular, the transit depths
obtained at 8μm (IRAC channel 4) are all within 45ppm of
expected values, or within 13ppm if adopting the power-2 or
claret-4 coefficients. Overall, the transit depths obtained using the
claret-4 coefficients deviate by less than ∼20ppm from expected
values, other than for the M5V model in the visible passbands,
where the discrepancy reaches 34and 80ppm for the STIS/
G750L and STIS/G430L passbands. The peak-to-peak amplitudes
in best-fit transit depths over the five passbands are 94, 28, and
8ppm, going from the coolest to the hottest model. The results
obtained with the power-2 coefficients are more robust for the
cooler stars, and are within 44ppm of expected values, except for
the F0V model in the visible passbands, where the inferred transit
depths are 105 and 88ppm larger for the STIS/G750L and STIS/
G430L passbands. The peak-to-peak amplitudes in best-fit transit

Figure 6. Left panel: exact transit light-curves obtained with b=0 for the M5 V star in the WFC3/G141 passband. Right, top panel: residuals for the best-fit transit
models using theoretical quadratic (green), square-root (yellow), claret-4 (red), and power-2 (blue) limb-darkening coefficients. Right, bottom panel: residuals
obtained with the empirical limb-darkening coefficients.
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depths over the five passbands are 47, 44, and 102ppm, again
from the coolest to the hottest model. The quadratic-law
coefficients have the largest scatter in the best-fit transit depth
across the different passbands for all models, with peak-to-peak
amplitudes of 250, 164, and 107ppm.

Even though the true value of the transit depth is not known in a
“real-world” scenario, the presence of biases can be revealed by
time-correlated noise in the light-curve residuals. Figure 6 shows
the residuals between the exact light-curve and the best-fit
parametric model for the M5V star in the WFC3 passband. The
full list of light-curve residuals is reported in Figure 23. The
amplitudes of the time-correlated residuals (maximum discrepan-
cies from zero) are in the ranges 97–456, 8–105, and 11–75ppm
with quadratic, power-2, and claret-4 models respectively.
Residuals at infrared wavelengths are typically smaller than in
the visible, as expected. Neilson et al. (2017) report similar
amplitudes for the residuals between the exact light-curves,

computed with their CLIV stellar-atmosphere models, and
parametric light-curve models. For comparison, residuals with
∼10 ppm root mean square (rms) amplitude have been obtained
from the phase-folded Kepler photometry of several targets (e.g.,
Barnes et al. 2011; Müller et al. 2013), and ∼50–200 ppm rms
amplitude is typically obtained for the white light-curves observed
with the HST/WFC3 (e.g., Deming et al. 2013; Tsiaras et al.
2016a, 2016b).
It is possible that better results would be obtained if the limb-

darkening coefficients were fitted adopting a different sampling in
μ (e.g., uniform in r rather than in μ), a different method (e.g.,
imposing flux-conservation), and/or using spherical intensities
(e.g., Sing 2010; Claret & Bloemen 2011; Howarth 2011a;
Espinoza & Jordán 2015). A detailed study of the different
approaches is beyond the scope of this paper, but the analysis in
Section 4.4 provides some clear indications.

Figure 7. Top panel: differences between the best-fit and the input transit depths for the edge-on transits in front of the M5 V model, using empirical quadratic (green,
upward triangles), square-root (yellow, downward triangles), claret-4 (red diamonds), and power-2 (blue circles) limb-darkening coefficients; the expected values
(Equations (7)) are indicated with black “+.” Middle, bottom panels: the same for the M0 V and F0 V models.
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4.4. Transit Models with Empirical
Limb-darkening Coefficients

4.4.1. Edge-on Transits

We repeated the fits to the exact light-curves with the limb-
darkening coefficients as free parameters (in addition to p, aR,
and i). The increased flexibility allows parametric models that
better match the transits, as shown by the smaller time-
correlated residuals in Figures 6 and 23 (Appendix A). The
residual amplitudes are in the range 10–63, 0–31, and 0–4ppm
with quadratic, power-2, and claret-4 models respectively. The
time-correlated residuals due to imperfections in the transit
models with empirical limb-darkening coefficients are hardly
detectable with current instruments.

Figure 7 shows the corresponding best-fit transit depths. Despite
the very small light-curve residuals, the inferred transit depth can
be significantly biased. The bias obtained with quadratic limb-
darkening is roughly linear in the logarithm of wavelength for the
two M dwarfs, ranging from 27 to 40ppm at 8μm to
200–225ppm at 0.4μm; there is no evident trend for the F0V
model, but the transit depth is again systematically over-estimated,
by 17–52ppm. The square-root and power-2 laws have similar
performances, with deviations from the expected values smaller
than 45ppm, except for three “bad” points: the STIS/G430L
passband for the M5V model, and the STIS/G430L and STIS/
G750L passbands for the F0V model, for which the transit depth
estimates are smaller than the apparent values by 170–138,

207–205, and 74–73ppm for the two laws. The transit depth
estimates obtained when fitting the claret-4 coefficients are the
most accurate, with deviations from the expected values being
smaller than 30ppm (largest in the STIS/G430L passband) and
peak-to-peak amplitudes of 41, 36, and 24ppm from the coolest to
the hottest model.
Figure 8 shows the empirical limb-darkening models and their

residuals for the case of the M5V observed in the WFC3 passband.
The full list of models and the relevant residuals are reported in
Figure 24 (Appendix A). It appears that the empirical limb-
darkening models are better constrained at larger μ values,
corresponding to the inner part of the disk. We also found that
the empirical coefficients can be obtained from the stellar-
atmosphere models if a uniform sampling in r rather than in μ is
used. However, if a functional form is not able to reproduce the
intensity profile, the empirical model will be particularly discrepant
at the limb, causing larger biases in the best-fit transit depth
compared to the case of theoretical coefficients with a uniform
sampling in μ. Quadratic models, especially, always overpredict the
intensities at the limb, so that an apparently larger planet would be
needed to occult the extra stellar flux, in agreement with the larger
transit depth estimates.

4.4.2. Inclined Transits

For randomly orientated orbits, the inclinations i are distributed
such that the probability density of icos is uniform between 0

Figure 8. Top panel: Plane-parallel (black “+”) and spherical (black line) model-atmosphere intensities vs. μ for the M5 V star in the WFC3/G141 passband.
Parametric limb-darkening functions inferred from the transit light-curves (empirical models) are quadratic (green), square-root (yellow), claret-4 (red), and power-2
(blue) laws. Bottom panel: large-scale plots of residuals of empirical limb-darkening laws for model-atmosphere intensities in the spherical and plane-parallel
geometries (continuous and dashed lines, respectively).
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and 1. For circular orbits, therefore, the impact parameter,
b a icosR= , is uniformly distributed between 0 and aR, the
semimajor axis in units of stellar radius. An exoplanet transits if
and only if b p0 1 < + . We tested the ability to constrain the
stellar limb-darkening profile and to measure the correct transit
depth changes for the case b=0.5. This study was conducted for
the claret-4 and power-2 laws, as they led to more robust results
than the other parameterizations. In this configuration, the area of
the stellar disk with r b p 0.35< - = , or 0.94m , is never
occulted by the transiting exoplanet.

Figure 9 shows the comparison between the transit depths
estimated for the cases with b=0 and 0.5, using the claret-4
and power-2 laws. In most cases, there are no significant
differences in transit depth obtained for the cases with b=0
and 0.5. The largest discrepancies (29–68 ppm) are registered
for the three “bad” points of the power-2 law, which are
highlighted in Section 4.4.1. The empirical limb-darkening
profiles are also very similar. Figure 10 shows the difference
for the two most discrepant cases. The parametric models
obtained from the transits with b=0.5 approximate the

Figure 9. Left panels: differences between the best-fit and input transit depths for the three stellar models, with b=0 (red, full diamonds), and 0.5 (orange, empty
diamonds), using empirical claret-4 limb-darkening coefficients; the expected values are denoted by black “+.” Right panels: the same, but with empirical power-2
limb-darkening coefficients, b=0 (blue, full circles), and 0.5 (cyan, empty circles).
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intensities at the limb slightly better than those obtained from
the transits with b=0, but the bias is also significant. In
general, it appears that, if a parametric law does not allow a
good approximation of the limb-darkening profile, the
empirical model is optimized toward the center of the disk
and significantly deviates at the limb (see also the quadratic fits
in Figure 8). In these cases, inclined transits automatically
attribute slightly higher weights to the intensities at the limb, as
the planet spends more time occulting areas further from the
center. Even if the innermost region of the stellar disk is not
sampled during the transit, this is not often a problem, at least if
b 0.5 , because the intensity gradient does not vary
significantly near the center. The examples discussed here
may suggest that inclined transits can lead to smaller biases in
the inferred transit parameters and limb-darkening profiles than
edge-on transits, but the improvements appear to be quite small
and, more importantly, the error bars have not yet been
considered.

4.5. Narrow-band (WFC3-like) Exoplanet Spectroscopy

The results discussed in Section 4.4.1 may suggest that it is
difficult to model the depth of a hot-Jupiter transit with an absolute
precision better than ∼10–30ppm, because of the intrinsic
limitations of the stellar limb-darkening parameterizations (claret-
4 being the most accurate among those currently used). This
potential bias will be particularly important when analyzing visible

to mid-infrared exoplanet spectra measured with the JWST, as it is
comparable with the instrumental precision limit (Beichman et al.
2014).
In this section, we investigate the potential errors in

relative transit depth over multiple narrow bands within a
limited wavelength range, so-called “narrow-band exoplanet
spectroscopy.” This kind of measurement has been performed
with HST/STIS (Charbonneau et al. 2002; Vidal-Madjar et al.
2003, 2004), Spitzer/IRS (Grillmair et al. 2007, 2008; Richardson
et al. 2007), HST/NICMOS (Swain et al. 2008, 2009a, 2009b;
Tinetti et al. 2010), HST/WFC3 (Deming et al. 2013; Crouzet
et al. 2014; Fraine et al. 2014; Knutson et al. 2014a, 2014b;
Kreidberg et al. 2014a, 2014b, 2015; McCullough et al. 2014;
Stevenson et al. 2014; Line et al. 2016; Tsiaras et al. 2016a,
2016b), and other space- and ground-based spectrographs (e.g.,
Redfield et al. 2008; Snellen et al. 2008; Swain et al. 2010;
Danielski et al. 2014), leading to the discovery of a long list of
atomic, ionic, and molecular species in the atmospheres of
exoplanets.
Since the detection of the chemical species relies on their

spectral features, it is not affected by a constant offset in transit
depth; hence only the errors in transit depth differences at
multiple wavelengths, referred to as relative error, are
important. Here, we study the case of exoplanet spectroscopy
with HST/WFC3, for which the narrow-band spectra reported
in the literature often have ∼20–40ppm error bars.

Figure 10. Top, left panel: plane-parallel (black “+”) and spherical (black line) angular intensity vs. μ for the M5 V model in the STIS/G430L passband; parametric
limb-darkening with empirical power-2 coefficients fitted to the transit light-curves with b=0 (blue) and 0.5 (cyan). Bottom, left panel: residuals between the
parametric models and the spherical intensities. Right panels: the same for the F0 V model in the STIS/G430L passband.
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Figure 11. Top panel: differences between the best-fit and the input transit depths for the M5 V model over 25 wavelength bins in the WFC3/G141 passband, with
b=0, using theoretical (orange, empty diamonds) and empirical (red, full diamonds) claret-4 coefficients.

Figure 12. MCMC-sampled posterior distributions of modeled transit depth for the edge-on transit, F0 V model, IRAC/ch4 passband, with 100ppm Gaussian noise
(fitting p, aR, i, normalization factor, and limb-darkening coefficients). The histogram channels (blue and light-blue) are for two chains with 1,500,000 iterations, using
the power-2 law; the channels are half-thick and shifted to improve their visualization. The red and orange lines denote the analogous posterior distributions when
using the claret-4 law. The input and expected transit depths are also indicated (black vertical lines, continuous and dashed, respectively).
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To fix the ideas, we considered 25 wavelength bins, identical to
those adopted in Tsiaras et al. (2016b), to generate one set of exact
light-curves (as in Section 3.2) for each stellar model, and
calculated the theoretical limb-darkening coefficients. We modeled
each exact light-curve using the two approaches outlined in
Sections 4.3 and 4.4, i.e., with the theoretical and empirical limb-
darkening coefficients, respectively.

Figure 11 shows the spectra obtained by using the most accurate
claret-4 law. The spectra calculated with the theoretical limb-
darkening coefficients are offset by +1, +18, and −18ppm, on
average, in excellent agreement with the measured biases for the
broadband light-curves reported in Section 4.3. The relative errors,
as measured by the peak-to-peak amplitudes, are 22, 14, and
8ppm, from the coolest to the hottest model. The use of empirical
limb-darkening coefficients reduces the spectral offsets, in these

cases, to less than 3ppm, and also reduces the peak-to-peak
amplitudes down to 9, 5, and 4ppm, respectively. Note that, in all
configurations, the peak-to-peak amplitudes across the WFC3
narrow bands are smaller than the respective amplitudes for the
broadband photometry from visible to mid-infrared reported in
Section 4.3 and 4.4, and they also decrease with the increasing
model temperature.
We remind the reader that the results discussed up to this section

focus on the potential biases due to the approximate stellar limb-
darkening parameterizations, in the absence of noise. The limits of
the actual parameter fitting for light-curves with a low, but realistic,
noise level are discussed in Section 5. An additional complication
is the presence of temporal gaps in the transit light-curves observed
with instruments onboard the HST, and from satellites operating on
low orbits in general. The impact of such gaps in the retrieval of

Figure 13. Top panels: transit depth chains for the edge-on transit, F0 V model, IRAC/ch4 passband, with 100ppm Gaussian noise, fitting p, aR, i, normalization
factor, and power-2 (blue and light-blue) or claret-4 (red and orange) limb-darkening coefficients. Bottom panels: mean values and standard deviations calculated over
fractional chains with 300,000 iterations; the horizontal lines indicate the mean values calculated over the full chains (continuous lines), and the mean values plus or
minus the standard deviations (dashed lines).

Figure 14. Transit depth estimates for the edge-on transit in front of the F0 V model, IRAC/ch4 passband, with 100ppm Gaussian noise (different noise time series,
blue); fitting p, aR, i, normalization factor, and power-2 limb-darkening coefficients. Average over the 10 light-curves (blue, continuous line), input (black, continuous
line) and expected (black, dashed line) values.
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the transit parameters will be discussed in a separate paper
(K. Karpouzas et al. 2017, in preparation).

5. Light-curve Fitting with Empirical
Limb-darkening Coefficients

Sections 4.3 and 4.4 discussed the intrinsic biases due to the use
of parametric models with theoretical (plane-parallel) or empirical
limb-darkening coefficients. We now consider fitting the transit
models with empirical limb-darkening coefficients to more realistic

light-curves with noise. Those light-curves are obtained by adding
Gaussian time series to the exact light-curves (see Section 3.2).
The standard deviation for the noise time series was set at
∼100ppm, which is similar to the best photon-noise limit possible
for a short-cadence Kepler frame (Van Cleve & Caldwell 2009), or
for a single HST/WFC3 scan (Deming et al. 2013; Tsiaras et al.
2016b), taking into account the different integration times. We
focused on four cases: two transits with b=0 and 0.5 across the
hottest model star, at 8μm (F0V model, IRAC/ch4 passband),
and across the coolest model star, at ∼430 nm (M5V model,

Figure 15. MCMC-sampled posterior distributions of modeled transit depth for the edge-on transit, M5 V model, STIS/G430L passband, with 100ppm Gaussian
noise (fitting p, aR, i, normalization factor, and limb-darkening coefficients). The histogram channels (blue and light-blue) are for two chains with 1,500,000 iterations,
using the power-2 law; the channels are half-thick and shifted to improve their visualization. The red and orange lines denote the analogous posterior distributions
when using the claret-4 law. The input and expected transit depths are also indicated (black vertical lines, continuous and dashed, respectively).

Figure 16. Top panels: transit depth chains for the edge-on transit, M5 V model, STIS/G430L passband, with 100ppm Gaussian noise, fitting p, aR, i, normalization
factor and power-2 (blue and light-blue) or claret-4 (red and orange) limb-darkening coefficients. Bottom panels: mean values and standard deviations calculated over
fractional chains with 300,000 iterations; the horizontal lines indicate the mean values calculated over the full chains (continuous lines), and the mean values plus or
minus the standard deviations (dashed lines).
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STIS/G430L passband). The cases considered correspond to those
for which the limb-darkening effects are weakest (mid-infrared)
and strongest (visible).

5.1. F0 V Model, IRAC/ch4 Passband

Figure 12 shows the transit depth posterior distributions for the
b=0 transit and F0V model in the IRAC/ch4 passband, MCMC
sampled with 1,500,000 iterations. Figure 13 reports the relevant

chains. Similar parameter chains are computed, in parallel, for aR,
i, the limb-darkening coefficients, a normalization factor, and the
likelihood’s variance. In two cases, the limb-darkening coefficients
for the power-2 law are fitted, in the other two cases the claret-4
ones. The sampled posterior distributions of the transit depth, using
the power-2 limb-darkening law, are almost identical and, in
particular, the mean values and standard deviations differ by less
than 1ppm. Even considering subsets of the chains with 300,000
samples, the mean values and standard deviations are stable to

Figure 17. Transit depth estimates for the edge-on transit in front of the M5 V model, STIS/G430L passband, with 100ppm Gaussian noise (different noise time
series, blue); fitting p, aR, i, normalization factor, and power-2 limb-darkening coefficients. Average over the 10 light-curves (blue, continuous line), input (black,
continuous line) and expected (black, dashed line) values.

Figure 18. Top panel: MCMC-sampled posterior distributions of modeled transit depth for the edge-on transit in front of the M5 V model, STIS/G430L passband,
with 100ppm Gaussian noise; fitting p, aR, i, normalization factor and limb-darkening coefficients. The histogram channels (red and orange) are for two chains with
1,500,000 iterations, using claret-4 coefficients and Gaussian priors on aR and i; the channels are half-thick and shifted to improve their visualization. Other lines
denote the posterior distributions obtained with non-informative priors for all parameters and claret-4 (red and orange) or power-2 (blue and light-blue) limb-darkening
coefficients. The input and expected transit depths are also indicated (black vertical lines, continuous and dashed, respectively). Bottom panel: analogous distributions
for the inclined transit (b=0.5), except that the red and orange lines report the histograms from the top panel for comparison.
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Figure 19. Top panels: transit depth chains for the edge-on transit, M5 V model, STIS/G430L passband, with 100ppm Gaussian noise, fitting p, aR, i, normalization factor and
claret-4 limb-darkening coefficients, adopting Gaussian priors on aR and i. Bottom panels: mean values and standard deviations calculated over fractional chains with 300,000
iterations; the horizontal lines indicate the mean values calculated over the full chains (continuous lines), and the mean values plus or minus the standard deviations (dashed lines).

Figure 20. Top panel: transit depth estimates for the edge-on transit in front of the M5 V model, STIS/G430L passband, with 100ppm Gaussian noise (different noise
time series, red); fitting p, aR, i, normalization factor and claret-4 limb-darkening coefficients, adopting Gaussian priors on aR and i. Average over the 10 light-curves
(red, continuous line), input (black, continuous line) and expected (black, dashed line) values. Bottom panel: the same for the inclined transit (b=0.5).
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better than 5ppm. It may appear from Figure 12 that the results are
biased, given that the peak of the posterior distribution is more
than 1σ away from the expected value. However, by repeating the
analysis with different noise realizations, the best-fit transit depth is
within 1σ of the expected value in 7 cases out of 10, consistent
with the expectations for Gaussian noise (see Figure 14).
Interestingly, the average of the individual best-fit transit depths
is 9ppm above the expected value, which is very close to the
7ppm bias measured in the noiseless case (Section 4.4). The
chains calculated with the claret-4 law present significant long-
term modulations, resulting in wider posterior distributions; there
are also moderately large differences between the two repetitions,
indicating that they have not converged. The lack of convergence
when fitting the claret-4 coefficients is not a surprise, and it is due
to strong correlations between the coefficients and with the other
transit parameters.

Figures 25 and 26 (Appendix B) show the posterior
distribution and chains obtained for the inclined transit, with
b=0.5, using the power-2 limb-darkening law. The posterior
distributions are wider than those obtained for the edge-on
transit, with 1σ ≈20ppm rather than 12ppm. The estimates
from the partial chains with 300,000 samples are also less
robust, with the corresponding mean values scattered over a
12ppm interval.

The accuracy and precision of the empirical limb-darkening
profiles are discussed in Appendix C.

5.2. M5 V Model, STIS/G430L Passband

We conducted corresponding studies for two transits in front of
the M5V model in the STIS/G430L passband. Figure 15 shows
the transit depth posterior distributions for the edge-on transit, and
Figure 16 reports the relevant chains. The sampled posterior
distributions of the transit depth, using the power-2 limb-
darkening law, are in good agreement and, in particular, the
mean values differ by 10ppm, with standard deviations of 45 and
48ppm, respectively. As expected, the error bars are larger than
those obtained for the less limb-darkened case (with identical
noise). The estimates from the fractional chains with 300,000
samples may differ by up to 35ppm, and the relevant standard
deviations are in the range 34–51ppm. Even in this case, the
MCMC process failed to converge when fitting the claret-4
coefficients. Figure 17 reports the transit depth estimates obtained
with 10 different noise realizations, using the power-2 law. Note
that their average is significantly biased in the same direction as
the bias obtained in absence of noise (see Section 4.4), and the 1σ
error bars are smaller than the bias.
Figures 27 and 28 (Appendix B) show the posterior

distribution and chains obtained for the inclined transit, with
b=0.5, using the power-2 limb-darkening law. The posterior
distributions are wider than those obtained for the edge-on
transit, i.e., 1s » 115ppm rather than 45ppm.
The accuracy and precision of the empirical limb-darkening

profiles are discussed in Appendix C.

Figure 21. Top panel: MCMC-sampled posterior distributions of modeled transit depth for the edge-on transit in front of the M5 V model, STIS/G430L passband,
with 100ppm Gaussian noise, then binned over 7 points; fitting p, aR, i, normalization factor and claret-4 limb-darkening coefficients, adopting Gaussian priors on aR
and i. The histogram channels (red and orange) are for two chains with 1,500,000 iterations, using claret-4 coefficients and Gaussian priors on aR and i; the channels
are half-thick and shifted to improve their visualization. The gray lines denote the analogous posterior distributions without binning. The input and expected transit
depths are also indicated (black vertical lines, continuous and dashed, respectively). Bottom panel: the same for the inclined transit (b=0.5).
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5.3. The Benefits of Using Prior Information

The examples discussed in Section 5.1 and 5.2 show that:

1. if using the power-2 law, the empirical limb-darkening
coefficients can be fitted with the other transit parameters
(p, aR, i; see Section 3.2) and a normalization factor, but
the results can be significantly biased, depending on the
stellar model and passband;

2. the analogous fits, using the claret-4 law, fail to converge
(at least, using our MCMC routine with up to 1,500,000
iterations).

Unfortunately, all the two-coefficients laws are biased for some
stellar types and wavelengths (see Sections 4.3 and 4.4), but
most of them are sufficiently accurate in the infrared
wavelengths. Some authors proposed to fitting one or two
coefficients of the claret-4 law, while keeping the other
coefficients fixed (e.g., Howarth & Morello 2017). We found
that the validity of this approach relies on a good choice of the
fixed coefficients, and thus is not fully empirical.

Our proposal is that, if the “geometric” parameters, aR and i,
are measured in the infrared, the results can be implemented as
an informative prior when fitting at shorter wavelengths, thanks
to their small or negligible wavelength-dependence, based on
Equations (8), (9) and Table 3. We tested fitting for p, aR, i, the
claret-4 limb-darkening coefficients, and a normalization
factor, on the transit light-curves obtained for the M5 V model
in the STIS/G430L passband, adopting Gaussian priors on aR
and i. The parameters of the Gaussian priors are reported in
Table 4. Figure 18 shows the transit depth posterior distribu-
tions for the edge-on and the inclined transits, obtained with
1,500,000 MCMC samples. Figure 19 shows the relevant
chains. The use of Gaussian priors on aR and i leads to
convergence of the MCMC fits with claret-4 coefficients. The
error bars in transit depth are significantly smaller than those
estimated with power-2 limb-darkening coefficients and non-
informative priors on aR and i, falling to ∼25 and ∼50
(compared with∼45 and ∼115 ppm), for the edge-on and
inclined transits, respectively. The biases, averaged over 10
light-curves with different noise levels, are also smaller (+15
and −7 ppm; Figure 20).

As a final test, we investigated the effect of having a longer
integration time, similar to that of the Kepler short-cadence
frame. The longer integration time is simulated by binning the
transit light-curves over 7 points (7 8.4 58.8´ = s). The
relevant transit depth posterior distributions are shown in
Figure 21; they are almost identical to the non-binned ones. We
conclude that an integration time of ∼1 min, as for the Kepler
short-cadence frames, does not affect the accuracy (error bar) of
the fitted transit depth, compared to shorter integration times.

6. Discussion: Synergies Between the
JWST and Kepler, K2, TESS

Empirical limb-darkening coefficients determined from
exoplanetary transit light-curves are desirable, not only to
validate the stellar-atmosphere models, but also to improve
both the absolute and relative precision of inferred exoplane-
tary spectra. No two-coefficient limb-darkening law is accurate
for all stellar types and/or wavelengths, but can still give near-
perfect fits to the transit light-curves, albeit with significantly
biased transit parameters and limb-darkening coefficients. To

overcome this issue, fitting for the claret-4 limb-darkening
coefficients is necessary, but some prior knowledge of the
orbital parameters aR and i is required to enable convergence of
the fitting algorithms.
Such knowledge can be obtained from the infrared

observations, for which the effect of limb-darkening is smaller,
and simple two-coefficient laws may be sufficiently accurate.
The MIRI instrument onboard JWST will provide suitable
observations for tens of exoplanets. A re-analysis of the Kepler
and K2 targets, with the approach developed in Section 5.3, can
address some of the controversies reported in the literature
(e.g., Soutworth 2008; Claret 2009; Kipping & Bakos 2011a;
Müller et al. 2013), if the only problem was the use of
inadequate two-parameter limb-darkening laws. The same
approach should be used for new observations that will be
obtained, in the visible, by TESS and/or other JWST
instruments.

7. Conclusions

We studied the potential biases in transit depth due to the use
of theoretical stellar limb-darkening coefficients obtained from
plane-parallel model atmospheres, and when fitting for
empirical limb-darkening coefficients, over a range of model
temperatures and instrumental passbands. We propose the use
of a two-coefficient law, named “power-2,” which outperforms
the most common two-coefficient laws adopted in the
exoplanet literature, especially for the M-dwarf models.
Nevertheless, the Claret four-coefficient law is significantly
more robust than any simpler one, especially at visible
wavelengths. Our results indicate that an absolute precision
of 30ppm can be achieved in the modeled transit depth at
visible and infrared wavelegths, with 10ppm relative
precision over the HST/WFC3 passband, depending on the
stellar type. The intrinsic bias due to the use of theoretical limb-
darkening coefficients obtained from plane-parallel models is
also 30ppm for most exoplanet host stars (F–M spectral
types), but this estimate does not take into account the
uncertainties in the stellar models and in the measured stellar
parameters, or the effect of stellar activity and other second-
order effects.
Finally, we developed an optimal strategy to fitting for the

four-coefficient limb-darkening in the visible, using prior
information on the exoplanet orbital parameters to break some
of the degeneracies. This novel approach could solve some of
the controversial results reported in the literature, which relies
on empirical estimates of quadratic limb-darkening coefficients.
The forthcoming JWST mission will provide accurate informa-
tion on the orbital parameters of transiting exoplanets through
observations performed by MIRI, enabling wide application of
the approach developed in this paper.

This work was supported by STFC (ST/K502406/1) and the
ERC project ExoLights (617119). D.H. is supported by
Sonderforschungsbereich SFB 881 “The Milky Way System”
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Appendix A
Supplemental Figures: Best-fit Models and Residuals

This Appendix contains Figures 22–24 showing the best-fit
limb-darkening and transit models for each stellar type and
passband analyzed in Sections 4.1–4.4.
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Figure 22. Top panels: plane-parallel (black “+”) and spherical (black line) model-atmosphere intensities vs. μ. Parametric limb- darkening functions fitted to plane-
parallel intensities are quadratic (green), square-root (yellow), claret-4 (red), and power-2 (blue) laws. Bottom panels: large-scale plots of residuals of parametric limb-
darkening laws for model-atmosphere intensities in the plane-parallel and spherical geometries (continuous and dashed lines, respectively).
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Figure 23. Left panels: exact transit light-curves obtained with b=0. Right, top panels: residuals for the best-fit transit models using fixed quadratic (green), square-
root (yellow), claret-4 (red), and power-2 (blue) limb-darkening coefficients. The coefficients are fitted to the plane-parallel angular intensities. Right, bottom panels:
residuals obtained with the empirical limb-darkening coefficients.
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Figure 24. Top panels: plane-parallel (black “+”) and spherical (black line) angular intensity vs. μ. Parametric limb-darkening with empirical limb-darkening
coefficients fitted to the transit light-curves with b=0, using quadratic (green), square-root (yellow), claret-4 (red), and power-2 (blue) law. Bottom panels: zoom of
the residuals between parametric limb-darkening and spherical intensities (continuous lines), plane-parallel intensities (dashed lines).
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Appendix B
Supplemental Figures: MCMC-fitting

Results for Inclined Transits

This Appendix contains Figures 25–28 showing the
histograms and chains for the inclined transits, analogous to
those presented in Sections 5.1–5.2 for the edge-on transits
(Figures 12–13 and 15–16).

Appendix C
Accuracy and Precision of Empirical

Limb-darkening Models

In contrast to other transit parameters, the limb-darkening
coefficients do not correspond directly to some physical
property of the star–planet system. Also, for a given limb-
darkening law, there exist sets of coefficients which are largely

Figure 25. MCMC-sampled posterior distributions of the transit depth for the inclined transit (b=0.5) in front of the F0 V model, IRAC/ch4 passband, with
100ppm Gaussian noise; fitting p, aR, i, normalization factor, and power-2 limb-darkening coefficients. The histogram channels (blue and light-blue) are for two
chains with 1,500,000 iterations; the channels are half-thick and shifted to improve their visualization. The input (black, continuous, vertical line) and expected (black,
dashed, vertical line) transit depths are also indicated.

Figure 26. Top panel: transit depth chains for the inclined transit (b=0.5) in front of the F0 V model, IRAC/ch4 passband, with 100ppm Gaussian noise; fitting p,
aR, i, normalization factor and power-2 limb-darkening coefficients. Bottom panel: mean values and standard deviations calculated over fractional chains with 300,000
iterations; the horizontal lines indicate the mean values calculated over the whole chains (continuous lines), and the mean values plus or minus the standard deviations
(dashed lines).

Figure 27. MCMC-sampled posterior distributions of the transit depth for the inclined transit (b=0.5) in front of the M5 V model, STIS/G430L passband, with
100ppm Gaussian noise; fitting p, aR, i, normalization factor and power-2 limb-darkening coefficients. The histogram channels (blue and light-blue) are for two chains
with 1,500,000 iterations, using the power-2 law; the channels are half-thick and shifted to improve their visualization. The input (black, continuous, vertical line) and
expected (black, dashed, vertical line) transit depths are also indicated.
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different but generate almost indistinguishable intensity
profiles. Instead of studying their posterior distributions, it is
more sensitive to calculate the chains of specific intensities at
given μ values, then to compare, in the case of simulations,
with the input limb-darkening profile.

Figure 29 shows the residuals in specific intensities obtained
from the two light-curves relative to the F0 V model in the
IRAC/ch4 passband (Section 5.1), one edge-on (b= 0) and

one inclined (b=0.5) transit, using the power-2 law. The error
bars (i.e., the standard deviations of the intensity chains) are
smaller than 0.2% for 0.4m > , then increase up to 1% near
the edge of the disk. For the inclined transit, the error bars are
larger by factors 1.0–2.4. The error bars of the predicted
intensities along the steep drop-off, i.e., at 0.08m , are not
representative of the true errors, as the predictions may deviate
from the input values by more than 10σ.

Figure 28. Top panel: transit depth chains for the inclined transit (b=0.5) in front of the M5 V model, STIS/G430L passband, with 100ppm Gaussian noise; fitting
p, aR, i, normalization factor and power-2 limb-darkening coefficients. Bottom panel: mean values and standard deviations calculated over fractional chains with
300,000 iterations; the horizontal lines indicate the mean values calculated over the whole chains (continuous lines), and the mean values plus or minus the standard
deviations (dashed lines).

Figure 29. Top panel: residuals between power-2 empirical limb-darkening profile and the spherical intensities for the F0 V model, IRAC/ch4 passband, obtained
from the edge-on transit with 100ppm Gaussian noise: estimates from the intensity chains (blue), model with median (red, continuous line) and mean (red, dotted line)
chain values for the limb-darkening coefficients. Bottom panel: the same from the inclined transit (b=0.5).
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We find that a good set of limb-darkening coefficients, which
reproduces intensities close to those predicted by the intensity
chains, can be obtained by taking medians of the coefficients
chains. Figure 30 shows the intensity profiles estimated in this
way, from light-curves with different noise realizations. They
show, on average, the same bias obtained for the noiseless case
(see Section 4.4).

Figures 31 and 32 report the analogous results obtained
for the M5 V model in the STIS/G430L passband
(Section 5.2). The error bars on the specific intensities
are, on average, 1.5 times larger than those obtained for
the less limb-darkened cases. Even in this case, the bias
is similar to that obtained for the noiseless case (see
Section 4.4).

Figure 30. Residuals between power-2 empirical limb-darkening profile and the spherical intensities for the F0 V model, IRAC/ch4 passband, obtained from the
edge-on transit without noise (blue, continuous line) and with 100ppm Gaussian noise (different noise time series, blue, dotted lines). Models are estimated by taking
the median chain values for the limb-darkening coefficients.

Figure 31. Top panel: residuals between power-2 empirical limb-darkening profile and the spherical intensities for the M5 V model, STIS/G430L passband, obtained
from the edge-on transit with 100ppm Gaussian noise: estimates from the intensity chains (blue), model with median (red, continuous line) and mean (red, dotted line)
chain values for the limb-darkening coefficients. Bottom panel: the same from the inclined transit (b=0.5).
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