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ABSTRACT
We analyse Kepler light-curves of the exoplanet Kepler Object of Interest no. 13b (KOI-13b)
transiting its moderately rapidly rotating (gravity-darkened) parent star. A physical model, with
minimal ad hoc free parameters, reproduces the time-averaged light-curve at the ∼10 parts per
million level. We demonstrate that this Roche-model solution allows the absolute dimensions
of the system to be determined from the star’s projected equatorial rotation speed, ve sin i∗,
without any additional assumptions; we find a planetary radius RP = (1.33 ± 0.05) R�, stellar
polar radius Rp� = (1.55 ± 0.06) R�, combined mass M∗ + MP( � M∗) = (1.47 ± 0.17) M�
and distance d � (370 ± 25) pc, where the errors are dominated by uncertainties in relative
flux contribution of the visual-binary companion KOI-13B. The implied stellar rotation period
is within ∼5 per cent of the non-orbital, 25.43-hr signal found in the Kepler photometry. We
show that the model accurately reproduces independent tomographic observations, and yields
an offset between orbital and stellar-rotation angular-momentum vectors of 60.◦25 ± 0.◦05.
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1 IN T RO D U C T I O N

One of the many unexpected results to emerge from studies of
exoplanets this century has been the discovery of orbits that are
not even approximately coplanar with the stellar equator (cf., e.g.
Winn & Fabrycky 2015).

The tool traditionally most commonly used to investigate the rel-
ative orientations of orbital and stellar-rotation angular-momentum
vectors is the Rossiter–McLaughlin (R–M) effect (Holt 1893;
Schlesinger 19101) – the apparent displacement of rotationally
broadened stellar line profiles arising from a body occulting part
of the stellar disc. Long established in eclipsing-binary studies (e.g.
Rossiter 1924; McLaughlin 1924), the R–M effect took on new
significance following its detection in the archetypal transiting exo-
planetary system HD 209458 (Queloz et al. 2000). The discovery of
misaligned planetary orbits in other systems followed (Hébrard et al.
2008; Winn et al. 2009), and sample sizes are now large enough2

to suggest that stars with thick convective envelopes generally have
planets with small orbital misalignments, while a broader spread of
values is found in hotter stars (Schlaufman 2010; Winn et al. 2010;
Albrecht et al. 2012; Mazeh et al. 2015).

The R–M effect is an essentially spectroscopic phenomenon,
being studied through radial-velocity measurements. In principle,
there is a corresponding photometric signature, arising through

� E-mail: idh@star.ucl.ac.uk
1 An example of Stigler’s law (Merton 1957; Stigler 1980).
2 ∼120 at the time of writing;
e.g. http://www.astro.keele.ac.uk/jkt/tepcat/rossiter.html

Doppler boosting (e.g. Groot 2012), but the signal is too small for
any reliable detections to date. Transit photometry does, however,
offer potential diagnostics of spin-orbit alignment if the surface-
brightness distribution over the occulted parts of the stellar disc
is not circularly symmetric. In particular, if the stellar rotation
is sufficiently rapid, it can introduce both an equatorial extension
and, through gravity darkening, a characteristic latitude-dependent
surface-intensity distribution; these effects are capable of defining
the relative direction of the stellar rotation axis, and hence of diag-
nosing misaligned transits (e.g. Barnes 2009).

The first system to be recognized as having a misaligned or-
bit from photometry alone, without supporting evidence from the
R–M effect, was Kepler Object of Interest no. 13 (KOI-13; Szabó
et al. 2011; Barnes, Linscott & Shporer 2011). Other systems in
which asymmetry in the transit light-curve has been interpreted
as arising through rotationally induced gravity darkening include
KOI-89 (Ahlers, Barnes & Barnes 2015) and HAT-P-7 (KOI-2;
Masuda 2015), while the same approach has been used to argue for
good alignment of orbital and rotational angular-momentum vec-
tors for KOI-2138 (Barnes et al. 2015). In other cases, modelling
of lower-quality data has led to less compelling claims; e.g. PTFO
8-8695 (cp. Barnes et al. 2013; Howarth 2016) and CoRot-29 (cp.
Cabrera et al. 2015; Pallé et al. 2016).

In this paper, we re-examine Kepler photometry of transits of
KOI-13, using a more complete physical model than previous stud-
ies. Our intention is to stress-test the model against data of re-
markable quality, and to demonstrate its power to establish ab-
solute numerical values for key stellar and planetary parameters.
Following a selective review of the literature on KOI-13 (Sec-
tion 2), we summarize the model (Section 3) and the data preparation
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Rapid rotators revisited: KOI-13 933

(Section 4). Results are presented and discussed in Sections 5 and 6.
Appendix A demonstrates how to put the modelling on an absolute
scale, given the star’s projected equatorial rotation speed.

2 TH E KO I - 1 3 S Y S T E M

KOI-13 (historically catalogued as BD +46◦ 2629) was identified
as the host of a transiting exoplanet by Borucki et al. (2011). Aitken
(1904) had previously noted BD +46◦ 2629 as a visual binary with
components of comparable brightness, separated by ∼1.1 arcsec
(Howell et al. 2011; Law et al. 2014), which Szabó et al. (2011)
showed share a common proper motion. The latter authors identi-
fied the marginally brighter component as the transiting system, a
result confirmed by Santerne et al. (2012), who found the fainter
component, KOI-13B, to be itself a spectroscopic binary.

The basic transit light-curve was modelled by Barnes et al. (2011),
who showed that its small asymmetry arises from stellar gravity
darkening coupled to spin–orbit misalignment. Subsequent tomo-
graphy yielded results inconsistent with the obliquity inferred in this
first analysis (Johnson et al. 2014), but by imposing the constraint
afforded by the spectroscopy, Masuda (2015) was able to identify
a geometry that reconciled the spectroscopic and light-curve solu-
tions.

The exquisite quality of the Kepler data has inspired a number
of ancillary studies. In particular, the system clearly shows out-of-
transit orbital variations arising from Doppler beaming, ellipsoidal
distortion and reflection effects (‘BEER’ effects; Shporer et al. 2011;
Mazeh et al. 2012; Mislis & Hodgkin 2012). A further, 25.43-hr,
periodic signal has been identified in the photometry, and has been
suggested as arising either from tidally induced pulsation (Shporer
et al. 2011; Mazeh et al. 2012) or from rotational modulation (Szabó
et al. 2012).

3 MO D E L L I N G

The Barnes et al. (2011) and Masuda (2015) analyses of the tran-
sit light-curve were both based on a simple oblate-spheroid stellar
geometry and utilized blackbody fluxes coupled to a global two-
parameter limb-darkening ‘law’. These are reasonable approxima-
tions for initial investigations, especially since KOI-13’s rotation is
substantially subcritical (cf. Table 1), but we undertook our work
in the hope that a somewhat more physically based model would
better constrain the system with fewer ad hoc adjustments.

The basic model is as described by Howarth (2016; Howarth &
Smith 2001). Appropriate values for model parameters, and their
probability distributions, are determined through Markov-chain
Monte Carlo (MCMC) sampling, with uniform priors unless stated
otherwise.

3.1 Star

The star’s rotationally distorted surface is approximated as a Roche
equipotential.3 Latitude-dependent values of surface gravity, g, and
local effective temperature, T �

eff , are calculated self-consistently,
taking into account gravity darkening. The stellar flux is then com-
puted as a numerical integration of emitted intensities over visible
surface elements.

3 Mass distributions from polytropic models give negligibly different results
(Plavec 1958; Martin 1970). By default, surface angular velocity is assumed
to be independent of latitude.

3.1.1 Intensities

Specific intensities (radiances), I (λ, μ, T �
eff, g), are interpolated

from a grid of line-blanketed, solar-abundance local thermody-
namic equilibrium models (Howarth 2011a), integrated over the
Kepler passband. The interpolation in angle (μ = cos θ , where θ is
the angle between the surface normal and the line of sight) is per-
formed using an analytical four-parameter characterization (Claret
2000)

I (μ)/I (1) = 1 −
4∑

n=1

an(1 − μn/2), (1)

which reproduces individual numerical values to ∼0.1 per cent
(Howarth 2011a).

3.1.2 Modelled effective temperature, gravity

Surface distributions of temperature and gravity are needed in order
to evaluate model-atmosphere emergent intensities (and for no other
reason). These parameters are completely specified by the adopted
gravity-darkening law (Section 3.1.3), plus any suitable normaliza-
tions; we use the base-10 logarithm of the polar gravity in c.g.s.
units, log gp, and the stellar effective temperature,

Teff = 4

√∫
σ (T �

eff )4 dA∫
σ dA

(where σ is the Stefan–Boltzmann constant and the integrations are
over surface area).

While the use of model-atmosphere intensities removes the need
for ad hoc limb-darkening parameters, this is at the expense of
assumptions that, first, the effective temperature and polar gravity
are known with adequate precision to give a sufficiently faithful
representation of limb darkening, and secondly, that the model-
atmosphere calculations predict the emergent intensities reliably.
Anticipating that neither assumption needs necessarily be valid (e.g.
Howarth 2011b), we draw an explicit distinction between the actual
physical quantities Teff, log gp and their model-parameter counter-
parts T L

eff , log gL
p (where the superscript is intended to indicate a

‘light-curve’, or ‘limb-darkening’, determination; cf. Section 5).

3.1.3 Gravity darkening

It is not immediately obvious whether gravity darkening in KOI-13
should be modelled according to a recipe appropriate for radiative or
convective envelopes. While the literature documents a surprising
large dispersion for estimates of its effective temperature (7650–
9107 K; Brown et al. 2011, Szabó et al. 2011, Huber et al. 2014,
Shporer et al. 2014, with claimed precisions that are considerably
smaller than the spread of results), the more detailed studies tend
towards values at the lower end of the range. This puts Teff not very
far from the boundary between convective and radiative regimes,
around Teff � 7000 K (e.g. Claret 1998). Because of this, we ran
several sequences of models using a generic gravity-darkening law,

T �
eff ∝ gβ, (2)

with the gravity-darkening exponent β as a free parameter. These
models all migrated to solutions with exponents very close to the
von Zeipel (1924) value of β = 0.25, as was also found by Masuda
(2015).

For most model runs, we actually used the parameter-free gravity-
darkening model proposed by Espinosa Lara & Rieutord (2011),
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934 I. D. Howarth and G. Morello

Table 1. Model parameters and illustrative fitted values. Model M1 has T L
eff as a free parameter (cf. Section 3.1.2), with log gL

p ≡ log gp; model M2 additionally

has log gL
p free; model M3 has Prot fixed. The errors (on the last quoted significant figure of the parameter values) are the quadratic sum of 95-percentile ranges

on solution M1 (initial L3 = 0.45) and the maximum deviation of corresponding solutions with initial L3 values in the range 0.41–0.49 (Section 5.2).

Parameter Best-fitting value
Model: M1 ± M2 M3

Stellar:
T L

eff Effective-temperature parametera (K) 8084 186 7987 8046
log gL

p Polar-gravity parametera (dex cgs) – 4.27 4.32
�/�c Angular rotation rate (in units of the critical rate) 0.341 15 0.343 0.320

i∗ Inclination of stellar rotation axis to line of sight (0–90◦) 81.137 16 81.135 81.134
Rp�/a Polar radius (in units of the orbital semi-major axis) 0.2219 4 0.2217 0.2219

L3 ‘Third light’ 0.451 39 0.451 0.451
g.d. Gravity darkening: ELR

Planetary:
RP/a Planetary radius(in units of the orbital semi-major axis) 0.0190 7 0.0190 0.0190

Orbital:
iorb Inclination of orbital angular-momentum vector to line

of sight (0–180◦)
93.319 22 93.316 93.316

λ Angle between the projections on to the plane of the sky
of the orbital and stellar-rotational angular-momentum
vectors, measured counter-clockwise from the former
(0–360◦)

59.19 5 59.20 59.20

Imposed:
Porb Orbital period (d) 1.76358799

ve sin i∗ Projected equatorial rotation speedb (km s−1) 76.6 ± 0.2
Prot Rotation period (d) – – 1.0596

Derived stellar parameters:
log gp True polar gravity (dex cgs) 4.209 19 4.21 4.24

Rp�/R� Polar radius 1.49 7 1.48 1.61
Re/R� Equatorial radius 1.52 7 1.51 1.63

Oblateness 1 − Rp�/Re 0.0178 17 0.0181 0.0156
Tp/Teff Relative polar temperature 1.0118 11 1.0119 1.0103
Te/Teff Relative equatorial temperature 0.9939 6 0.9938 0.9947

(1 + q)M∗/M� System massc 1.31 17 1.29 1.64
log (LL/L�) luminosity × (Teff/T

L
eff )

4 (dex solar) 0.94 3 0.92 1.00
ρ∗ Mean density (g cm−3) 0.5373 11 0.5380 0.5397
ve Equatorial rotation speed (km s−1) 77.3 4 77.5 78.0

Prot Rotation period (d) 0.994 23 0.987 –
Other derived parameters:

RP/R� Planetary radius (R�= (RN
eJRN

pJ)
1/2) 1.28 5 1.28 1.38

ψ Angle between orbital and stellar-rotational
angular-momentum vectors (0–180◦)

60.24 5 60.25 60.25

b Impact parameter (Rp�) 0.2609 12 0.2609 0.2607

Notes. Additional model parameters include e, the orbital eccentricity (e = 0 assumed here) and longitude of periastron (0–360◦; undefined when e = 0).
Best-fit (minimum-χ2) parameter sets are listed; median values of MCMC runs are extremely close to these values.
aUsed only to evaluate model-atmosphere intensities, and constrained in the present study only by limb darkening; cf. Section 5.1
bDerived radii scale linearly with ve sin i∗, and the mass as (ve sin i∗)3; Appendix A.
cMass ratio q ≡ MP/M∗ � 4 × 10−3 (Shporer et al. 2014; Esteves et al. 2015; Faigler & Mazeh 2015).

which is close to von Zeipel gravity darkening at the subcritical rota-
tion appropriate to KOI-13. This ‘ELR’ formulation has a somewhat
firmer physical foundation than the original von Zeipel analysis, and
gives better agreement with, in particular, optical interferometry of
rapid rotators (e.g. Domiciano de Souza et al. 2014).

3.2 Transit

Transits are modelled by assuming a completely dark occulting
body of circular cross-section, in a misaligned circular orbit; al-
though an orbital eccentricity e = (6 ± 1) × 10−4 has been inferred
from out-of-transit photometry of KOI-13 by Esteves, De Mooij &
Jayawardhana (2015), this has negligible consequences for our
study. The contamination of the transit light-curve by KOI-13B
(spatially unresolved in the Kepler beam) is characterized by its

fractional contribution to the total signal, or ‘third light’ (L3) in the
nomenclature of traditional eclipsing-binary studies.4

3.3 Parameters

Table 1 lists one set of basic parameters that fully specify the model
(other combinations are possible). We stress that the geometry of
the model is fundamentally scale-free; all linear dimensions are
expressed in units of the orbital semi-major axis, while times are
implicitly in units of the orbital period. The extent of effects arising
from rotational distortion is determined by �/�c, the ratio of the
rotational angular velocity to the critical value at which the effective

4 Of course, the exoplanetary ‘second light’ is extremely small.
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equatorial gravity is zero; a value for the stellar mass, often assumed
in similar studies, is not required.

4 DATA PR E PA R AT I O N

We used the full set of short-cadence Pre-search Data Conditioning
Simple Aperture Photometry (PDCSAP) data, which are publicly
available through the Kepler Input Catalogue (Brown et al. 2011).
The PDCSAP results are produced by the standard Kepler pipeline,
which removes instrumental artefacts, and span from 2009 June to
2013 May.

The sampling step of 58.9 s corresponds to ∼4 × 10−4 of the
1.7-d orbital period. The maximum difference between ‘instanta-
neous’ and exposure-integrated model fluxes in the parameter space
of interest is 6 parts per million (ppm), which is small enough to be
neglected (deviations exceed 1 ppm for a phase range of <0.001).

The system shows out-of-transit orbital variations arising from
BEER effects (Section 2). Even over the limited phase range that we
model, ±0.1Porb around conjunction, the amplitude of these effects
is ∼40 ppm, which is far from negligible. We treated these effects
as a perturbation on the basic model, and corrected for them by
using the empirical three-harmonics model5 described by Shporer
et al. (2014).

The 25.43-hr signal has a semi-amplitude variously reported as
12–30 ppm (Shporer et al. 2011; Mazeh et al. 2012; Szabó et al.
2012); from the limited out-of-transit phase range of our data, we
determine a semi-amplitude of only 6 ppm, suggesting that the
amplitude may be variable. Although the period is close to a 3:5
resonance with the orbital period (Shporer et al. 2011), the ratio is
not exact. Consequently, this signal is ‘mixed out’ over the ∼4-yr
span of the observations when phased on transits, and effectively
becomes only a minor source of additional stochastic noise.

In order to reduce the 299 423 individual observations down to a
manageable subset for MCMC modelling, for each of 577 separate
transits the data were first phased (according to the ephemeris used
in the current MCMC cycle), corrected for BEER effects, and rescaled
to give a median out-of-transit flux of one.6 In principle, any free
parameters in the adopted functional form for the ephemeris could
be allowed to ‘float’ in the fitting process; in practice, we adopted a
linear ephemeris with a fixed period (Porb = 1.763 587 99 d; Shporer
et al. 2014), but allowed the time of conjunction to vary.

We then compressed the resulting data by taking median nor-
malized fluxes in phase bins of 0.0002 (about half the integration
time of individual observations), whence each bin contained ∼300
data points. The maximum change in normalized flux between the
central times of bins is 1.2 × 10−4, which is comparable to the dis-
persion of the individual data points (∼1.6 × 10−4 out of transit), but
large compared to the precision of the binned data (∼1.0 × 10−5);
consequently, we tagged the median flux in each bin with the mean
time of all observations in that bin (invariably close to the mid-bin
time) rather than its original, individual phase.

5 FIT R ESU LTS

As a basis for subsequent discussion, we first present the results
of an initial ‘maximally constrained’ model, in which only (effec-

5 The model defined by eqtnion (11) and table 5 of Shporer et al. has to be
reversed in both x and y.
6 ‘Out of transit’ was taken as 0.045 ≤ |φ| ≤ 0.1, where orbital phase φ is
measured in the range −0.5: +0.5 about conjunction.

tively) geometric parameters were adjusted. ELR gravity darken-
ing (Espinosa Lara & Rieutord 2011) and model-atmosphere limb-
darkening were used, along with fixed values for Teff (7650 K;
Shporer et al. 2014) and L3 (0.45; Szabó et al. 2011). The results
of this ‘model 0’ are illustrated in Fig. 1 and show relatively large
residuals during ingress and egress (∼50 ppm).

We investigated the origin of these residuals through extensive
exploration of model parameters. Adopting equation (2) with β

free essentially reproduced von Zeipel’s law, which, in turn, gives
sensibly identical results to the ELR model (unsurprisingly, since the
latter is known to reproduce von Zeipel at low to moderate rotation).
Moderate adjustments to L3 had similarly small consequences for

Figure 1. Phase-folded Kepler photometry. In the top panel, the small black
dots represent individual observations, and large red dots (which blend into
a continuous band) are the median values in phase bins of 0.002. The white
line through the medians is from model M2 (Section 5); any other gravity-
darkened model is virtually indistinguishable at the scale of this plot. The
lower panel shows O−C residuals for different models (cf. Section 5). Model
0 is for Teff = 7650 K, L3 = 0.45; model M1 is as model 0 but with T L

eff free;
model M2 is as model M1, but with log gL

p also free; model M3 is as model
M2, but with the rotation period fixed. Vertical dashed lines are intended
simply as a visual aid to identifying transit phases.
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936 I. D. Howarth and G. Morello

the quality of the model fits. These experiments identified errors in
the limb darkening as the principal cause of the discrepancies.

We addressed this issue in three ways. First, we replaced the
near-exact representation of the angular dependence of the model-
atmosphere intensities afforded by equation (1) with a simple
quadratic limb-darkening law,

I (μ)/I (1) = 1 − u1(1 − μ) − u2(1 − μ)2, (3)

with the coefficients u1, u2 as free parameters. In applying this law
globally (in common with, e.g. Masuda 2015), we abandon any
latitudinal temperature dependence of the coefficients.

Secondly, in a gesture towards retaining temperature-dependent
limb-darkening while introducing only a single additional free pa-
rameter, we investigated scaling the linear (a2) term in the four-
coefficient characterization.7

Thirdly, recognizing that there is a temperature dependence of
the model limb darkening, we allowed the effective-temperature
parameter to float; that is, we characterize the model-atmosphere
intensities by T L

eff rather than Teff (Section 3.1.2).
Unsurprisingly, all three approaches gave improved model fits,

but it is noteworthy that quite small adjustments to the model ef-
fective temperature have significant consequences at the ∼10 ppm
level of precision, solely through the modest sensitivity of I(μ)/I(1)
to this parameter. In practice, allowing T L

eff to float also led to smaller
residuals than the other approaches in our numerical experiments;
we adopt the corresponding results for this reason, and to avoid
introducing additional ad hoc parameters. Numerical values for this
‘model M1’ are included in Table 1, and it is confronted with the
observations in Fig. 1. Fig. 2 is a simple cartoon illustrating the
implied geometry of the system.

Model-atmosphere intensities are a function of not only tem-
perature, but also surface gravity (as well as abundances and mi-
croturbulence). The true polar gravity, log gp (which, with �/�c,
characterizes the overall surface-gravity distribution) is not a free
parameter in our model (Section 6). However, we can allow the
value used in obtaining the model-atmosphere intensities, log gL

p ,
to ‘float’ as, effectively, an additional limb-darkening parameter.
Doing this naturally affords further, albeit slight, improvement in
the model fit (model M2 in Table 1 and Fig. 1).

The remaining systematic residuals (peaking at <10 ppm) may
arise from orbital evolution over the duration of the Kepler obser-
vations (Szabó et al. 2012; Szabó, Simon & Kiss 2014; Masuda
2015), since the time-averaged light-curve will not correspond to
any single-epoch photometry. Modelling the time-dependent be-
haviour is beyond the scope of this paper, partly because of the
substantial computing requirements required to model necessarily
less compacted data sets (we may return to this in future work), but
also because our discussion of third light (Section 5.2) emphasizes
that the uncertainties on fundamental parameters (our main interest
here) are likely to be dominated by other factors.

5.1 Effective temperature and limb darkening

We recall that the effective-temperature ‘determination’ in the
model is not a traditional, direct measurement of the actual
stellar effective temperature, Teff; rather, T L

eff is simply a parameter
that optimizes model-atmosphere limb darkening (over the range

7 There is a minor inconsistency in both the first and second approaches, in
that the integral of intensity over angle will, in general, no longer exactly
match the model-atmosphere flux, but this is unimportant for our application.

Figure 2. Cartoon view of the system. The origin of the co-ordinates is the
stellar centre of mass, and the projected stellar-rotation axis is arbitrarily
orientated along the y axis; the exoplanet orbit extends to a � 4.5Rp�. The
approaching and receding stellar hemispheres are colour-coded blue and red
(in the on-line version); note that the star is slightly oblate. The exoplanet
is shown at orbital phase −0.03 (thereby indicating the direction of orbital
motion). The model is degenerate with its mirror image about the y axis.

of surface temperatures) to give a best match to the transit data.8

Only if the calculated model-atmosphere intensities are sufficiently
accurate will T L

eff correspond to the actual effective temperature.
However, it is noteworthy that, in practice, the optimized value of

T L
eff falls well within the range of direct Teff determinations; while

adopting only a moderately different fixed value gives relatively
large residuals. This highlights the importance of establishing the
correct value of Teff when comparing empirical and theoretical limb-
darkening coefficients (or when adopting the latter). Fig. 3 shows
the limb darkening for a model atmosphere at Teff = 8.00 kK,
log g = 4.2, representative of the parameter space within which
our solutions fall. The maximum difference in normalized inten-
sity, I(μ)/I(1), between this model and one at 7.65 kK is less than
2 per cent, and yet this difference accounts for almost all of the
residuals for Model 0 shown in Fig. 1.

5.2 Third light

The third light of the unresolved optical companion KOI-13B is
(literally) a nuisance parameter in our modelling. For our MCMC
runs, we experimented with initial values of L3 = 0.41–0.49 (
m
� 0.40–0.04), which bracket most observational determinations in
the literature9 (Fabricius et al. 2002; Adams et al. 2012; Law et al.
2014; Shporer et al. 2014), at steps of 0.02.

8 The same caveat applies to log gL
p ; the actual value of log gp is fixed by

other model parameters (Section 6).
9 Howell et al. (2011) report notably discordant values of 
m � 0.8–1.1
at ∼600–700 nm. Although the literature values are for diverse wavebands,
the KOI-13A and B components are of similar spectral types and colours
(Szabó et al. 2011), so any wavelength dependence of L3 should be small in
the optical regime.
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Rapid rotators revisited: KOI-13 937

Figure 3. Upper panel: normalized model-atmosphere limb darkening at
Teff = 8.0 kK, log g = 4.2, close to values for our best-fitting models (which
take into account the latitude dependence of these parameters). Lower panel:
differences in limb darkening for adjusted values, as indicated (in the sense
reference minus adjusted; note the 10-fold change in y-axis scale).

We found that the adopted third light always clung very close to
the initial estimate in our MCMC modelling, rather than converging
on to a value representing the global minimum in χ2 hyperspace.
This contrasts with the behaviour of other parameters, whose val-
ues freely migrated over relatively large ranges during ‘burn-in’.
Adjusting the proposal distribution did not alleviate this issue.

We believe that this outcome may arise because the transit light-
curve contains almost no information on the extent of third-light
dilution (cf., e.g. fig. 8 of Seager & Mallén-Ornelas 2003). Al-
though we might anticipate that this should be reflected in a wide
distribution in acceptable L3 values, rather than a narrow one, in
practice the set of other parameters essentially locks in L3, which
can therefore be regarded, in a limited sense, as a ‘derived’ param-
eter, given the system geometry, rather than a free one.

The inferred numerical values for other parameters therefore de-
pend somewhat on L3, to a degree that typically exceeds the for-
mal errors on any given model. For example, smaller L3 means
a shallower true transit depth, and hence implies smaller RP/R∗
(
(RP/R∗) � 0.08
L3). In recognition of this, while we adopt
solutions with input L3 = 0.45 (which yield the smallest residu-
als), we give errors in Table 1, which are the quadratic sum of
the 95 per cent-percentile ranges on those models and the max-
imum differences with the ‘best-fitting’ parameters from models
with L3(init.) = 0.41–0.49 (where the latter term dominates).

5.3 Rotation period

Our initial solutions (e.g. models M1 and M2) yielded rotation pe-
riods close to 24 hr, only ∼5 per cent from the 25.43-hr period
found in the Kepler photometry (Shporer et al. 2011; Mazeh et al.
2012; Szabó et al. 2012). Although rotational modulation had not
been widely anticipated for stars hotter than the ‘granulation bound-
ary’ marking the transition from radiative to convective envelopes
(e.g. Gray & Nagel 1989), evidence is beginning to accumulate for
starspots, of some nature, in A-type stars (Balona 2011, 2017; Böhm

et al. 2015), encouraging consideration of the possibility that we are
seeing a rotational signature in KOI-13 (Teff � 8 kK corresponds to
spectral type A5–A7), as suggested by Szabó et al. (2012).

We can impose the constraint of fixed Prot on the model, which
links �/�c to Rp�/a in the MCMC chains (Appendix A, equation
A2). The results of this model M3 are reported in Table 1; the
fit quality is quite reasonable (Fig. 1). Because the transit depth
essentially fixes RP/R∗, the main effect of imposing a longer rotation
period is to decrease the angular rotation rate, which for given
ve sin i∗ leads to a larger stellar radius, and hence, for ∼fixed density,
a higher stellar mass, as discussed in the Section 6.

5.4 Tomography

There are no published Rossiter–McLaughlin investigations of
KOI-13, but Johnson et al. (2014) conducted a detailed tomographic
study, providing a velocity-resolved map of the transit.

Our model allows stellar velocities (R–M effect or tomographic
counterpart) to be evaluated directly. This can be accomplished
by synthesizing the spectrum as a function of orbital phase, and
subjecting the ensemble of synthetic spectra to the same analysis as
the observations (e.g. cross-correlation, or tomography). However,
for this study, we simply take the intensity-weighted average radial
velocity,

v(λ) =
∫

v × I (λ,μ, T �
eff, g) dA∫

I (λ, μ, T �
eff, g) dA

,

where the integration is over area, and the (weak) wavelength depen-
dence of the model velocity comes about because of the wavelength
dependence of intensities on limb darkening and temperature. To
evaluate the R–M effect, the integration is conducted over all visible
elements, while taking the velocity of all occulted elements models
the tomographic signature.

The predicted locus of velocity versus phase from the light-curve
solution is compared to the Johnson et al. map in Fig. 4. The agree-
ment is very satisfactory, arising from the accord between the values
of projected obliquity λ and impact parameter b obtained from the
independent tomographic and photometric solutions (
λ = 0.◦6 ±
2.◦0, 
b = 0.01 ± 0.03).

6 SYSTEM PARAMETERS

Any fundamentally geometric transit model, such as employed here,
is of necessity scale-free. Consider Fig. 2; there is no indication of
whether this is a small, nearby system or a large, distant one.

Nevertheless, for given orbital period, a large, distant system
must have greater orbital velocities, and hence greater masses, than
a smaller, nearby system. This relationship between scale and mass
is codified in Kepler’s third law, which leads directly to a constraint
on a3/(M∗ + MP), and hence, given the dimensionless radius R∗/a,
to the stellar density (e.g. Seager & Mallén-Ornelas 2003) – but not
the mass and radius separately.

Barnes et al. (2011) suggested that rotational effects, and specif-
ically gravity darkening, can, in principle, lift the ‘density degen-
eracy’, through the dependence of � on mean stellar radius R∗.
However, in the Roche approximation the light-curve depends on
rotational effects only through the ratio �/�c; to get to � re-
quires calculation of �c, which itself has an M/R3 dependence.
Consequently, � is actually scale-free (as shown analytically in
Appendix A), and a Roche-model analysis of the transit light-curve
alone cannot break the mass/radius degeneracy in M/R3.
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Figure 4. Tomographic transit map, from Johnson et al. (2014, slightly contrast enhanced), overlaid with the prediction of the light-curve model (dashed line).
To make the comparison, we assume that the Johnson et al. ‘transit phase’ runs from first to fourth contact, and adopt their value of 76.6 km s−1 for ve sin i∗
(which directly determines the x-axis scaling).

Of course, if the orbital velocities can be established for both com-
ponents, these determine the absolute scale – the standard ‘double-
lined eclipsing binary’ approach. However, an alternative, indepen-
dent means of establishing the orbital semi-major axis (and hence
other system parameters) is available if Prot, the stellar rotation
period, i∗, the axial inclination, and ve sin i∗, the line-of-sight com-
ponent of the equatorial rotation speed, can be determined; these
immediately yields the equatorial radius,

Re = (Protve sin i∗)/(2π sin i).

The quantities Prot and i∗ can be estimated if the circular sym-
metry of the projected stellar disc is broken. A familiar example is
when starspots are present, but gravity-darkened stars have the same
potential (since �/�c relates, indirectly, to Prot). Introducing the ob-
served projected equatorial rotation speed, ve sin i∗, as a constraint
on the light-curve solution therefore affords usefully tight limits on
the absolute dimensions of the system. The straightforward algebra
is set out in Appendix A.

There are two precise determinations of projected rotation
speed of KOI-13A in the literature, in good mutual agreement:
ve sin i∗ = 76.96 ± 0.61 and 76.6 ± 0.2 km s−1 (Santerne et al.
2012; Johnson et al. 2014). We adopt the latter, more precise value
in order to calculate the system dimensions reported in Table 1.

[Our referee raised the point that the precision of these results
may not reflect their accuracy, an observation with which we fully
concur (cf., e.g. Howarth 2004). However, as shown in Appendix A
(equation A2), the semi-major axis scales linearly with ve sin i∗;
radii converted from normalized to absolute values scale in the
same way, while the absolute system mass scales as (ve sin i∗)3, from
Kepler’s third law. Hence, the results, or uncertainties, are readily
reassessed if another value for the projected equatorial rotation
speed is preferred.]

6.1 Distance

The effective temperature determines the surface brightness; given
the size of the star, the absolute magnitude follows, and hence the
distance. We find

M(V ) � 2.44 + 0.51

(
8.0 − Teff

kK

)
− 5 log

(
Rp∗

1.49R�

)
,

where the second term is an empirical fit to models with
7.5 < Teff/kK < 8.5; model-atmosphere Johnson V-band fluxes
are from Howarth (2011a); and we neglect the further, unimportant,
dependences of M(V) on �/�c and i∗.

There is a surprisingly large dispersion in the photometry of
KOI-13 catalogued in the Vizier system of the Centre de Données
astronomiques de Strasbourg, most of which clearly refers to the
combined light of the visual binary. We adopt the spatially resolved
Tycho-2 photometry, which transforms to V = 10.33 for KOI-13A
(with an uncertainty of ∼0.05; Høg et al. 2000). Foreground red-
dening is estimated as E(B − V ) � 0.m02 from Green et al. (2015),
whence

log

(
d

pc

)
= 2.566 + 0.2 [(V − 10.33) − (A(V ) − 0.06)]

−0.102

(
8.0 − Teff

kK

)
+ log

(
Rp∗

1.49R�

)
;

i.e. d � 370 pc, with an uncertainty of perhaps ∼25 pc.

7 C O N C L U S I O N S

We have conducted a new solution of Kepler photometry of tran-
sits of KOI-13b, obtaining results that are substantially in agree-
ment with those found by Masuda (2015), and in accord with
the tomography reported by Johnson et al. (2014). The solution
yields both the projected and true angular separations of the orbital
and stellar-rotation angular-momentum vectors. We emphasize that
any photometric solution is necessarily scale-free (e.g. does not
require a stellar mass to be assumed); but demonstrate that, by
adopting a value for ve sin i∗, the absolute system dimensions and
mass can be established. Allowing for the full range of solutions
(Table 1; third light L3 = 0.41–0.49, free or fixed stellar rotation
period), we obtain a planetary radius RP/R� = 1.33 ± 0.05, stel-
lar polar radius Rp�/R� = 1.55 ± 0.06 and a combined mass
M∗ + MP(�M∗) = 1.47 ± 0.17 M�. All solutions place KOI-13 in
an unremarkable location in the main-sequence mass–radius plane
(e.g. Eker et al. 2015).
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A P P E N D I X A : SC A L I N G

The photometric solution establishes reasonably precise values for
Rp�/a, �/�c, and sin i∗; and we have the ancillary observational
quantities Porb and ve sin i∗ to good accuracy.

In the Roche model, the critical angular rotation rate at which the
equatorial surface gravity is zero is

�c =
√

8

27

GM∗
R3

p∗
.

The equatorial rotation speed is

ve = �Re = (�/�c) �c f Rp∗

= f

(
�

�c

) √
8

27

GM∗
Rp∗

, (A1)

where again in the Roche model, the function f is given by

f = Re

Rp∗
= 3

(�/�c)
cos

[
π + cos−1(�/�c)

3

]

(Harrington & Collins 1968). Using Kepler’s third law,

M∗ + MP ≡ M∗(1 + q)

= 4π2

G P 2
orb

R3
p∗

(Rp∗/a)3
,

for the mass in equation (A1), and rearranging, gives the semi-major
axis:

a = Porb

f (�/�c)

ve sin i∗
sin i∗

√(
Rp∗
a

)
27 (1 + q)

32π2
. (A2)

All terms on the right-hand side are ‘known’, except the mass ra-
tio q = MP/M∗, which it may often be reasonable to assume to
be negligibly small if no numerical estimate is available. Having
evaluated the orbital semi-major axis, the linear dimensions of the
system components, and the mass, follow (radii from R/a, and M∗
from Kepler’s third law).

Using similar reasoning as above, we also have

Prot = 2π

�

= 2π

(�/�c)

√
27

8

R3
p∗

GM∗

= Porb

(�/�c)

√(
3

2

Rp∗
a

)3

(1 + q). (A3)

Thus in the Roche model the rotation period (or, equivalently, �)
is scale-free, and of itself offers no independent leverage on abso-
lute values of M∗ or Rp�. However, if Prot is known from indepen-
dent considerations, it may be used to constrain the combination
(Rp�/a)3/2(�/�c)−1 (Section 5.3).
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