45 research outputs found
Relationship between islet autoantibody status and the clinical characteristics of children and adults with incident type 1 diabetes in a UK cohort.
OBJECTIVES: To describe the characteristics of children and adults with incident type 1 diabetes in contemporary, multiethnic UK, focusing on differences between the islet autoantibody negative and positive. DESIGN: Observational cohort study. SETTING: 146 mainly secondary care centres across England and Wales. PARTICIPANTS: 3312 people aged ≥5 years were recruited within 6 months of a clinical diagnosis of type 1 diabetes via the National Institute for Health Research Clinical Research Network. 3021 were of white European ethnicity and 291 (9%) were non-white. There was a small male predominance (57%). Young people <17 years comprised 59%. MAIN OUTCOME MEASURES: Autoantibody status and characteristics at presentation. RESULTS: The majority presented with classical osmotic symptoms, weight loss and fatigue. Ketoacidosis was common (42%), especially in adults, and irrespective of ethnicity. 35% were overweight or obese. Of the 1778 participants who donated a blood sample, 85% were positive for one or more autoantibodies against glutamate decarboxylase, islet antigen-2 and zinc transporter 8. Presenting symptoms were similar in the autoantibody-positive and autoantibody-negative participants, as was the frequency of ketoacidosis (43%vs40%, P=0.3). Autoantibody positivity was less common with increasing age (P=0.0001), in males compared with females (82%vs90%, P<0.0001) and in people of non-white compared with white ethnicity (73%vs86%, P<0.0001). Body mass index was higher in autoantibody-negative adults than autoantibody-positive adults (median, IQR 25.5, 23.1-29.2vs23.9, 21.4-26.7 kg/m2; P=0.0001). Autoantibody-negative participants were more likely to have a parent with diabetes (28%vs16%, P<0.0001) and less likely to have another autoimmune disease (4%vs8%, P=0.01). CONCLUSIONS: Most people assigned a diagnosis of type 1 diabetes presented with classical clinical features and islet autoantibodies. Although indistinguishable at an individual level, autoantibody-negative participants as a group demonstrated features more typically associated with other diabetes subtypes. TRIAL REGISTRATION NUMBER: ISRCTN66496918; Pre-results
Loss-of-Function Mutations in the Cell-Cycle Control Gene CDKN2A Impact on Glucose Homeostasis in Humans.
At the CDKN2A/B locus, three independent signals for type 2 diabetes risk are located in a non-coding region near CDKN2A. The disease-associated alleles have been implicated in reduced β-cell function, but the underlying mechanism remains elusive. In mice, β-cell specific loss of Cdkn2a causes hyperplasia whilst overexpression leads to diabetes, highlighting CDKN2A as a candidate effector transcript. Rare CDKN2A loss-of-function mutations are a cause of familial melanoma and offer the opportunity to determine the impact of CDKN2A haploinsufficiency on glucose homeostasis in humans. To test the hypothesis that such individuals have improved β-cell function, we performed oral and intravenous glucose tolerance tests on mutation carriers and matched controls. Compared with controls, carriers displayed increased insulin secretion, impaired insulin sensitivity and reduced hepatic insulin clearance. These results are consistent with a model whereby CDKN2A-loss affects a range of different tissues, including pancreatic β-cells and liver. To test for direct effects of CDKN2A-loss on β-cell function, we performed knockdown in a human β-cell line, EndoC-bH1. This revealed increased insulin secretion independent of proliferation. Overall, we demonstrate that CDKN2A is an important regulator of glucose homeostasis in humans, thus supporting its candidacy as an effector transcript for type 2 diabetes-associated alleles in the region
Recommended from our members
A pragmatic and scalable strategy using mobile technology to promote sustained lifestyle changes to prevent type 2 diabetes in India and the UK: a randomised controlled trial
Abstract: Aims/hypothesis: This randomised controlled trial was performed in India and the UK in people with prediabetes to study whether mobile phone short message service (SMS) text messages can be used to motivate and educate people to follow lifestyle modifications, to prevent type 2 diabetes. Methods: The study was performed in people with prediabetes (n = 2062; control: n = 1031; intervention: n = 1031) defined by HbA1c ≥42 and ≤47 mmol/mol (≥6.0% and ≤6.4%). Participants were recruited from public and private sector organisations in India (men and women aged 35–55 years) and by the National Health Service (NHS) Health Checks programme in the UK (aged 40–74 years without pre-existing diabetes, cardiovascular disease or kidney disease). Allocation to the study groups was performed using a computer-generated sequence (1:1) in India and by stratified randomisation in permuted blocks in the UK. Investigators in both countries remained blinded throughout the study period. All participants received advice on a healthy lifestyle at baseline. The intervention group in addition received supportive text messages using mobile phone SMS messages 2–3 times per week. Participants were assessed at baseline and at 6, 12 and 24 months. The primary outcome was conversion to type 2 diabetes and secondary outcomes included anthropometry, biochemistry, dietary and physical activity changes, blood pressure and quality of life. Results: At the 2 year follow-up (n = 2062; control: n = 1031; intervention: n = 1031), in the intention-to-treat population the HR for development of type 2 diabetes calculated using a discrete-time proportional hazards model was 0.89 (95% CI 0.74, 1.07; p = 0.22). There were no significant differences in the secondary outcomes. Conclusions/interpretation: This trial in two countries with varied ethnic and cultural backgrounds showed no significant reduction in the progression to diabetes in 2 years by lifestyle modification using SMS messaging. Trial registration: The primary study was registered on www.ClinicalTrials.gov (India, NCT01570946; UK, NCT01795833). Funding: The study was funded jointly by the Indian Council for Medical Research and the UK Medical Research Council
Recommended from our members
A pragmatic and scalable strategy using mobile technology to promote sustained lifestyle changes to prevent type 2 diabetes in India and the UK: a randomised controlled trial
Abstract: Aims/hypothesis: This randomised controlled trial was performed in India and the UK in people with prediabetes to study whether mobile phone short message service (SMS) text messages can be used to motivate and educate people to follow lifestyle modifications, to prevent type 2 diabetes. Methods: The study was performed in people with prediabetes (n = 2062; control: n = 1031; intervention: n = 1031) defined by HbA1c ≥42 and ≤47 mmol/mol (≥6.0% and ≤6.4%). Participants were recruited from public and private sector organisations in India (men and women aged 35–55 years) and by the National Health Service (NHS) Health Checks programme in the UK (aged 40–74 years without pre-existing diabetes, cardiovascular disease or kidney disease). Allocation to the study groups was performed using a computer-generated sequence (1:1) in India and by stratified randomisation in permuted blocks in the UK. Investigators in both countries remained blinded throughout the study period. All participants received advice on a healthy lifestyle at baseline. The intervention group in addition received supportive text messages using mobile phone SMS messages 2–3 times per week. Participants were assessed at baseline and at 6, 12 and 24 months. The primary outcome was conversion to type 2 diabetes and secondary outcomes included anthropometry, biochemistry, dietary and physical activity changes, blood pressure and quality of life. Results: At the 2 year follow-up (n = 2062; control: n = 1031; intervention: n = 1031), in the intention-to-treat population the HR for development of type 2 diabetes calculated using a discrete-time proportional hazards model was 0.89 (95% CI 0.74, 1.07; p = 0.22). There were no significant differences in the secondary outcomes. Conclusions/interpretation: This trial in two countries with varied ethnic and cultural backgrounds showed no significant reduction in the progression to diabetes in 2 years by lifestyle modification using SMS messaging. Trial registration: The primary study was registered on www.ClinicalTrials.gov (India, NCT01570946; UK, NCT01795833). Funding: The study was funded jointly by the Indian Council for Medical Research and the UK Medical Research Council
The effects of kisspeptin on β-cell function, serum metabolites and appetite in humans
Aims: To investigate the effect of kisspeptin on glucose-stimulated insulin secretion and appetite in humans. Materials and methods: In 15 healthy men (age: 25.2 ± 1.1 years; BMI: 22.3 ± 0.5 kg m−2), we compared the effects of 1 nmol kg−1 h−1 kisspeptin versus vehicle administration on glucose-stimulated insulin secretion, metabolites, gut hormones, appetite and food intake. In addition, we assessed the effect of kisspeptin on glucose-stimulated insulin secretion in vitro in human pancreatic islets and a human β-cell line (EndoC-βH1 cells). Results: Kisspeptin administration to healthy men enhanced insulin secretion following an intravenous glucose load, and modulated serum metabolites. In keeping with this, kisspeptin increased glucose-stimulated insulin secretion from human islets and a human pancreatic cell line in vitro. In addition, kisspeptin administration did not alter gut hormones, appetite or food intake in healthy men. Conclusions: Collectively, these data demonstrate for the first time a beneficial role for kisspeptin in insulin secretion in humans in vivo. This has important implications for our understanding of the links between reproduction and metabolism in humans, as well as for the ongoing translational development of kisspeptin-based therapies for reproductive and potentially metabolic conditions
Loss-of-Function Mutations in the Cell-Cycle Control Gene CDKN2A Impact on Glucose Homeostasis in Humans.
At the CDKN2A/B locus, three independent signals for type 2 diabetes risk are located in a non-coding region near CDKN2A. The disease-associated alleles have been implicated in reduced β-cell function, but the underlying mechanism remains elusive. In mice, β-cell specific loss of Cdkn2a causes hyperplasia whilst overexpression leads to diabetes, highlighting CDKN2A as a candidate effector transcript. Rare CDKN2A loss-of-function mutations are a cause of familial melanoma and offer the opportunity to determine the impact of CDKN2A haploinsufficiency on glucose homeostasis in humans. To test the hypothesis that such individuals have improved β-cell function, we performed oral and intravenous glucose tolerance tests on mutation carriers and matched controls. Compared with controls, carriers displayed increased insulin secretion, impaired insulin sensitivity and reduced hepatic insulin clearance. These results are consistent with a model whereby CDKN2A-loss affects a range of different tissues, including pancreatic β-cells and liver. To test for direct effects of CDKN2A-loss on β-cell function, we performed knockdown in a human β-cell line, EndoC-bH1. This revealed increased insulin secretion independent of proliferation. Overall, we demonstrate that CDKN2A is an important regulator of glucose homeostasis in humans, thus supporting its candidacy as an effector transcript for type 2 diabetes-associated alleles in the region
Type 2 Diabetes Is Associated with Reduced ATP-Binding Cassette Transporter A1 Gene Expression, Protein and Function
Objective
Increasing plasma glucose levels are associated with increasing risk of vascular disease. We tested the hypothesis that there is a glycaemia-mediated impairment of reverse cholesterol transport (RCT). We studied the influence of plasma glucose on expression and function of a key mediator in RCT, the ATP binding cassette transporter-A1 (ABCA1) and expression of its regulators, liver X receptor-α (LXRα) and peroxisome proliferator-activated receptor–γ (PPARγ).
Methods and Results
Leukocyte ABCA1, LXRα and PPARγ expression was measured by polymerase chain reaction in 63 men with varying degrees of glucose homeostasis. ABCA1 protein concentrations were measured in leukocytes. In a sub-group of 25 men, ABCA1 function was quantified as apolipoprotein-A1-mediated cholesterol efflux from 2–3 week cultured skin fibroblasts. Leukocyte ABCA1 expression correlated negatively with circulating HbA1c and glucose (rho = −0.41, p<0.001; rho = −0.34, p = 0.006 respectively) and was reduced in Type 2 diabetes (T2DM) (p = 0.03). Leukocyte ABCA1 protein was lower in T2DM (p = 0.03) and positively associated with plasma HDL cholesterol (HDL-C) (rho = 0.34, p = 0.02). Apolipoprotein-A1-mediated cholesterol efflux correlated negatively with fasting glucose (rho = −0.50, p = 0.01) and positively with HDL-C (rho = 0.41, p = 0.02). It was reduced in T2DM compared with controls (p = 0.04). These relationships were independent of LXRα and PPARγ expression.
Conclusions
ABCA1 expression and protein concentrations in leukocytes, as well as function in cultured skin fibroblasts, are reduced in T2DM. ABCA1 protein concentration and function are associated with HDL-C levels. These findings indicate a glycaemia- related, persistent disruption of a key component of RCT
A natural mutation in Pisum sativum L. (pea) alters starch assembly and improves glucose homeostasis in humans
Elevated postprandial glucose (PPG) is a significant risk factor for non-communicable diseases globally. Currently, there is a limited understanding of how starch structures within a carbohydrate-rich food matrix interact with the gut luminal environment to control PPG. Here, we use pea seeds (Pisum sativum) and pea flour, derived from two near-identical pea genotypes (BC1/19RR and BC1/19rr) differing primarily in the type of starch accumulated, to explore the contribution of starch structure, food matrix and intestinal environment to PPG. Using stable isotope 13C-labelled pea seeds, coupled with synchronous gastric, duodenal and plasma sampling in vivo, we demonstrate that maintenance of cell structure and changes in starch morphology are closely related to lower glucose availability in the small intestine, resulting in acutely lower PPG and promotion of changes in the gut bacterial composition associated with long-term metabolic health improvements
Estimation of CT-derived abdominal visceral and subcutaneous adipose tissue depots from anthropometry in Europeans, South Asians and African Caribbeans
Background
South Asians and African Caribbeans experience more cardiometabolic disease than Europeans. Risk factors include visceral (VAT) and subcutaneous abdominal (SAT) adipose tissue, which vary with ethnicity and are difficult to quantify using anthropometry.
Objective
We developed and cross-validated ethnicity and gender-specific equations using anthropometrics to predict VAT and SAT.
Design
669 Europeans, 514 South Asians and 227 African Caribbeans (70±7 years) underwent anthropometric measurement and abdominal CT scanning. South Asian and African Caribbean participants were first-generation migrants living in London. Prediction equations were derived for CT-measured VAT and SAT using stepwise regression, then cross-validated by comparing actual and predicted means.
Results
South Asians had more and African Caribbeans less VAT than Europeans. For basic VAT prediction equations (age and waist circumference), model fit was better in men (R2 range 0.59-0.71) than women (range 0.35-0.59). Expanded equations (+ weight, height, hip and thigh circumference) improved fit for South Asian and African Caribbean women (R2 0.35 to 0.55, and 0.43 to 0.56 respectively). For basic SAT equations, R2 was 0.69-0.77, and for expanded equations it was 0.72-0.86. Cross-validation showed differences between actual and estimated VAT of <7%, and SAT of <8% in all groups, apart from VAT in South Asian women which disagreed by 16%.
Conclusion
We provide ethnicity- and gender-specific VAT and SAT prediction equations, derived from a large tri-ethnic sample. Model fit was reasonable for SAT and VAT in men, while basic VAT models should be used cautiously in South Asian and African Caribbean women. These equations will aid studies of mechanisms of cardiometabolic disease in later life, where imaging data are not available
Diabetes risk and amino acid profiles:cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall And Brent REvisited) Study
Aims/hypothesis
South Asian individuals have an increased risk of diabetes compared with Europeans that is unexplained by obesity and traditional or established metabolic measures. Circulating amino acids (AAs) may provide additional explanatory insights. In a unique cohort of European and South Asian men, we compared cross-sectional associations between AAs, metabolic and obesity traits, and longitudinal associations with incident diabetes.
Methods
Nuclear magnetic spectroscopy was used to measure the baseline (1988–1991) levels of nine AAs in serum samples from a British population-based cohort of 1,279 European and 1,007 South Asian non-diabetic men aged 40–69 years. Follow-up was complete for 19 years in 801 European and 643 South Asian participants.
Results
The serum concentrations of isoleucine, phenylalanine, tyrosine and alanine were significantly higher in South Asian men, while cross-sectional correlations of AAs with glycaemia and insulin resistance were similar in the two ethnic groups. However, most AAs were less strongly correlated with measures of obesity in the South Asian participants. Diabetes developed in 227 (35%) South Asian and 113 (14%) European men. Stronger adverse associations were observed between branched chain and aromatic AAs and incident diabetes in South Asian men. Tyrosine was a particularly strong predictor of incident diabetes in South Asian individuals, even after adjustment for metabolic risk factors, including obesity and insulin resistance (adjusted OR for a 1 SD increment, 1.47, 95% CI 1.17,1.85, p = 0.001) compared with Europeans (OR 1.10, 0.87, 1.39, p = 0.4; p = 0.045 for ethnicity × tyrosine interaction).
Conclusions/interpretation
Branched chain and aromatic AAs, particularly tyrosine, may be a focus for identifying novel aetiological mechanisms and potential treatment targets for diabetes in South Asian populations and may contribute to their excess risk of diabetes.</p