5 research outputs found

    Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities

    Get PDF
    Vegetation classification consistent with the Braun-Blanquet approach is widely used in Europe for applied vegetation science, conservation planning and land management. During the long history of syntaxonomy, many concepts and names of vegetation units have been proposed, but there has been no single classification system integrating these units. Here we (1) present a comprehensive, hierarchical, syntaxonomic system of alliances, orders and classes of Braun-Blanquet syntaxonomy for vascular plant, bryophyte and lichen, and algal communities of Europe; (2) briefly characterize in ecological and geographic terms accepted syntaxonomic concepts; (3) link available synonyms to these accepted concepts; and (4) provide a list of diagnostic species for all classes. Location: European mainland, Greenland, Arctic archipelagos (including Iceland, Svalbard, Novaya Zemlya), Canary Islands, Madeira, Azores, Caucasus, Cyprus. Methods: We evaluated approximately 10 000 bibliographic sources to create a comprehensive list of previously proposed syntaxonomic units. These units were evaluated by experts for their floristic and ecological distinctness, clarity of geographic distribution and compliance with the nomenclature code. Accepted units were compiled into three systems of classes, orders and alliances (EuroVegChecklist, EVC) for communities dominated by vascular plants (EVC1), bryophytes and lichens (EVC2) and algae (EVC3). Results: EVC1 includes 109 classes, 300 orders and 1108 alliances; EVC2 includes 27 classes, 53 orders and 137 alliances, and EVC3 includes 13 classes, 24 orders and 53 alliances. In total 13 448 taxa were assigned as indicator species to classes of EVC1, 2087 to classes of EVC2 and 368 to classes of EVC3. Accepted syntaxonomic concepts are summarized in a series of appendices, and detailed information on each is accessible through the software tool EuroVegBrowser. Conclusions: This paper features the first comprehensive and critical account of European syntaxa and synthesizes more than 100 yr of classification effort by European phytosociologists. It aims to document and stabilize the concepts and nomenclature of syntaxa for practical uses, such as calibration of habitat classification used by the European Union, standardization of terminology for environmental assessment, management and conservation of nature areas, landscape planning and education. The presented classification systems provide a baseline for future development and revision of European syntaxonomy.info:eu-repo/semantics/publishedVersio

    Distribution maps of vegetation alliances in Europe

    Get PDF
    Aim: The first comprehensive checklist of European phytosociological alliances, orders and classes (EuroVegChecklist) was published by Mucina et al. (2016, Applied Vegetation Science, 19 (Suppl. 1), 3–264). However, this checklist did not contain detailed information on the distribution of individual vegetation types. Here we provide the first maps of all alliances in Europe. Location: Europe, Greenland, Canary Islands, Madeira, Azores, Cyprus and the Caucasus countries. Methods: We collected data on the occurrence of phytosociological alliances in European countries and regions from literature and vegetation-plot databases. We interpreted and complemented these data using the expert knowledge of an international team of vegetation scientists and matched all the previously reported alliance names and concepts with those of the EuroVegChecklist. We then mapped the occurrence of the EuroVegChecklist alliances in 82 territorial units corresponding to countries, large islands, archipelagos and peninsulas. We subdivided the mainland parts of large or biogeographically heterogeneous countries based on the European biogeographical regions. Specialized alliances of coastal habitats were mapped only for the coastal section of each territorial unit. Results: Distribution maps were prepared for 1,105 alliances of vascular-plant dominated vegetation reported in the EuroVegChecklist. For each territorial unit, three levels of occurrence probability were plotted on the maps: (a) verified occurrence; (b) uncertain occurrence; and (c) absence. The maps of individual alliances were complemented by summary maps of the number of alliances and the alliance–area relationship. Distribution data are also provided in a spreadsheet. Conclusions: The new map series represents the first attempt to characterize the distribution of all vegetation types at the alliance level across Europe. There are still many knowledge gaps, partly due to a lack of data for some regions and partly due to uncertainties in the definition of some alliances. The maps presented here provide a basis for future research aimed at filling these gaps

    Tree-like pines on the Mshana peat bog in the Gorgany Mountains: a trace of Pinus uliginosa migration in the East Carpathians?

    No full text
    The taxonomic position of the population of tree-like, mostly polycormic individuals of pines from the Mshana peat bog in the Gorgany Mountains (East Carpathians, Ukraine) has been studied on the basis of the morphological characteristics of cones and needles, and anatomical characteristics of the needles. These features have been compared with the surrounding Pinus mugo population as well as P. uliginosa, P. mugo, P. sylvestris and P. uncinata from natural populations of the taxa. Tree-like individuals were found to have the most similar needles to P. uliginosa, but most similar cone characteristics to P. mugo. It was concluded, that the tree-like population has a relic character and can present the trace of the early migration of P. uliginosa from the West and its hybridisation with P. mugo

    Distribution and ecological growth conditions of Utricularia australis R. Br. in Ukraine

    No full text
    The study shows the biodiversity of Utricularia australis from western to northern regions of Ukraine. The environmental conditions of Ukraine are favourable for the spread and formation of phytocenosis involving U. australis, especially on thermoclimatic, cryothermal and continental scale. A broader range of the species’ relation to humidity has been recorded. The research outcome shows the existence of the species in conditions from shallow, parched reservoirs to deep water habitats which allows the species to withstand temporary drying of reservoirs in summer periods. The resilience of U. australis to some water quality parameters, including nitrogen, phosphorus, iron content, colour, pH and organic contamination was higher than in previous studies and Tsyganov’s ecological scales. Thus, due to its wide range of tolerance to the majority of environmental factors, U. australis tends to spread in contemporary climatic conditions in Ukraine. Considering that the species has category “vulnerable” in the country and is listed in the red data book of Ukraine, its conservation status is likely to be revised further

    European weed vegetation database. A gap-focused vegetation-plot database

    No full text
    This report presents the European Weed Vegetation Database, a new database of vegetation plots documenting short-lived vegetation of arable and ruderal habitats from Europe and Macaronesia. The database comprises the phytosociological classes Papaveretea rhoeadis, Sisymbrietea, Chenopodietea and Digitario sanguinalis-Eragrostietea minoris. It is a gap-focused database containing mainly plots of this vegetation from the areas not yet represented in the European Vegetation Archive (EVA), to facilitate its accessibility for researchers to answer various questions. As of the end of 2018, it contained 24,734 plots, predominantly from Southern Europe. The data can be used for phytosociological studies, various kinds of interdisciplinary research as well as for studies for agronomy, nature management and biodiversity conservation
    corecore