19 research outputs found

    Non-Coding RNAs: The “Dark Matter” of Cardiovascular Pathophysiology

    Get PDF
    Large-scale analyses of mammalian transcriptomes have identified a significant number of different RNA molecules that are not translated into protein. In fact, the use of new sequencing technologies has identified that most of the genome is transcribed, producing a heterogeneous population of RNAs which do not encode for proteins (ncRNAs). Emerging data suggest that these transcripts influence the development of cardiovascular disease. The best characterized non-coding RNA family is represented by short highly conserved RNA molecules, termed microRNAs (miRNAs), which mediate a process of mRNA silencing through transcript degradation or translational repression. These microRNAs (miRNAs) are expressed in cardiovascular tissues and play key roles in many cardiovascular pathologies, such as coronary artery disease (CAD) and heart failure (HF). Potential links between other ncRNAs, like long non-coding RNA, and cardiovascular disease are intriguing but the functions of these transcripts are largely unknown. Thus, the functional characterization of ncRNAs is essential to improve the overall understanding of cellular processes involved in cardiovascular diseases in order to define new therapeutic strategies. This review outlines the current knowledge of the different ncRNA classes and summarizes their role in cardiovascular development and disease

    MicroRNA-1 Downregulation Increases Connexin 43 Displacement and Induces Ventricular Tachyarrhythmias in Rodent Hypertrophic Hearts

    Get PDF
    Downregulation of the muscle-specific microRNA-1 (miR-1) mediates the induction of pathologic cardiac hypertrophy. Dysfunction of the gap junction protein connexin 43 (Cx43), an established miR-1 target, during cardiac hypertrophy leads to ventricular tachyarrhythmias (VT). However, it is still unknown whether miR-1 and Cx43 are interconnected in the pro-arrhythmic context of hypertrophy. Thus, in this study we investigated whether a reduction in the extent of cardiac hypertrophy could limit the pathological electrical remodeling of Cx43 and the onset of VT by modulating miR-1 levels. Wistar male rats underwent mechanical constriction of the ascending aorta to induce pathologic left ventricular hypertrophy (LVH) and afterwards were randomly assigned to receive 10mg/kg valsartan, VAL (LVH+VAL) delivered in the drinking water or placebo (LVH) for 12 weeks. Sham surgery was performed for control groups. Programmed ventricular stimulation reproducibly induced VT in LVH compared to LVH+VAL group. When compared to sham controls, rats from LVH group showed a significant decrease of miR-1 and an increase of Cx43 expression and its ERK1/2-dependent phosphorylation, which displaces Cx43 from the gap junction. Interestingly, VAL administration to rats with aortic banding significantly reduced cardiac hypertrophy and prevented miR-1 down-regulation and Cx43 up-regulation and phosphorylation. Gain- and loss-of-function experiments in neonatal cardiomyocytes (NCMs) in vitro confirmed that Cx43 is a direct target of miR-1. Accordingly, in vitro angiotensin II stimulation reduced miR-1 levels and increased Cx43 expression and phosphorylation compared to un-stimulated NCMs. Finally, in vivo miR-1 cardiac overexpression by an adenoviral vector intra-myocardial injection reduced Cx43 expression and phosphorylation in mice with isoproterenol-induced LVH. In conclusion, miR-1 regulates Cx43 expression and activity in hypertrophic cardiomyocytes in vitro and in vivo. Treatment of pressure overload-induced myocyte hypertrophy reduces the risk of life-threatening VT by normalizing miR-1 expression levels with the consequent stabilization of Cx43 expression and activity within the gap junction

    Flow-Responsive Noncoding RNAs in the Vascular System: Basic Mechanisms for the Clinician

    No full text
    The vascular system is largely exposed to the effect of changing flow conditions. Vascular cells can sense flow and its changes. Flow sensing is of pivotal importance for vascular remodeling. In fact, it influences the development and progression of atherosclerosis, controls its location and has a major influx on the development of local complications. Despite its importance, the research community has traditionally paid scarce attention to studying the association between different flow conditions and vascular biology. More recently, a growing body of evidence has been accumulating, revealing that ncRNAs play a key role in the modulation of several biological processes linking flow-sensing to vascular pathophysiology. This review summarizes the most relevant evidence on ncRNAs that are directly or indirectly responsive to flow conditions to the benefit of the clinician, with a focus on the underpinning mechanisms and their potential application as disease biomarkers

    Hindlimb Ischemia Impairs Endothelial Recovery and Increases Neointimal Proliferation in the Carotid Artery

    No full text
    Abstract Peripheral ischemia is associated with higher degree of endothelial dysfunction and a worse prognosis after percutaneous coronary interventions (PCI). However, the role of peripheral ischemia on vascular remodeling in remote districts remains poorly understood. Here we show that the presence of hindlimb ischemia significantly enhances neointima formation and impairs endothelial recovery in balloon-injured carotid arteries. Endothelial-derived microRNAs are involved in the modulation of these processes. Indeed, endothelial miR-16 is remarkably upregulated after vascular injury in the presences of hindlimb ischemia and exerts a negative effect on endothelial repair through the inhibition of RhoGDIα and nitric oxide (NO) production. We showed that the repression of RhoGDIα by means of miR-16 induces RhoA, with consequent reduction of NO bioavailability. Thus, hindlimb ischemia affects negative carotid remodeling increasing neointima formation after injury, while systemic antagonizzation of miR-16 is able to prevent these negative effects

    Transcoronary concentration gradients of circulating microRNAs in heart failure

    No full text
    Aims: Circulating levels of microRNAs (miRNAs) are emergent promising biomarkers for cardiovascular disease. Altered expression of miRNAs has been related to heart failure (HF) and cardiac remodelling. We measured the concentration gradients across the coronary circulation to assess their usefulness to diagnose HF of different aetiologies. Methods and results: Circulating miRNAs were measured in plasma samples simultaneously obtained from the aorta and the coronary venous sinus in patients with non-ischaemic HF (NICM-HF, n\ua0= 23) ischaemic HF (ICM-HF, n\ua0= 41), and in control patients (n\ua0= 11). A differential modulation of circulating levels of miR-423, -34a, -21-3p, -126, -199 and -30a was found across the aetiology groups. Interestingly, a positive transcoronary gradient was found for miR-423 (P\ua0< 0.001) and miR-34a (P\ua0< 0.001) only in the ICM-HF group. On the contrary, a positive gradient was found for miR-21-3p (P\ua0< 0.001) and miR-30a (P\ua0= 0.030) only in the NICM-HF group. Finally, no significant variations were observed in the transcoronary gradient of miR-126 or miR-199. Conclusions: The present findings suggest that circulating levels of miRNAs are differentially expressed in patients with HF of different aetiologies. The presence of a transcoronary concentration gradient suggests a selective release of miRNAs by the failing heart into the coronary circulation. The presence of aetiology-specific transcoronary concentration gradients in HF patients might provide important information to better understand their role in HF, and suggests they could be useful biomarkers to distinguish HF of different aetiologies

    MicroRNA Regulation of the Hyper-Proliferative Phenotype of Vascular Smooth Muscle Cells in Diabetes Mellitus

    No full text
    Harnessing the mechanisms underlying the exacerbated vascular remodelling in Diabetes Mellitus (DM) is pivotal to prevent the high toll of vascular diseases in DM patients. microRNAs (miRNA) regulate vascular smooth muscle cell (VSMC) phenotypic switch. However, miRNA modulation of the detrimental diabetic VSMC phenotype is underexplored. Streptozotocin-induced Type 1 Diabetes (T1DM) Wistar rats and T2DM Zucker rats underwent right carotid artery experimental angioplasty and global miRNA/mRNA expression profiling was obtained by RNA sequencing (RNA-Seq). 2 days after injury a set of 6 miRs were found to be uniquely down-regulated or up-regulated both in VSMCs in T1DM and T2DM. Among these, miR-29c and miR-204 were the most significantly mis-regulated in atherosclerotic plaques from DM patients. miR-29c overexpression and miR-204 inhibition per se attenuated VSMC phenotypic switch in DM. Concomitant miR-29c overexpression and miR-204 inhibition fostered an additive reduction in VSMC proliferation. Epithelial membrane protein 2 (Emp2) and Caveolin-1 (Cav1) mRNAs were identified as direct targets of miR-29c and miR-204, respectively. Importantly, contemporary miR-29c overexpression and miR-204 inhibition in the injured artery robustly reduced arterial stenosis in DM rats. Thus, contemporaneous miR-29c activation and miR-204 inhibition in DM arterial tissues is necessary and sufficient to prevent the exaggerated VSMC growth upon injury

    Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart

    Get PDF
    ObjectivesThe purpose of this study was to test the ability of insulin-like growth factor (IGF)-1/hepatocyte growth factor (HGF) to activate resident endogenous porcine cardiac stem/progenitor cells (epCSCs) and to promote myocardial repair through a clinically applicable intracoronary injection protocol in a pig model of myocardial infarction (MI) relevant to human disease.BackgroundIn rodents, cardiac stem/progenitor cell (CSC) transplantation as well as in situ activation through intramyocardial injection of specific growth factors has been shown to result in myocardial regeneration after acute myocardial infarction (AMI).MethodsAcute MI was induced in pigs by a 60-min percutaneous transluminal coronary angiography left anterior descending artery occlusion. The IGF-1 and HGF were co-administered through the infarct-related artery in a single dose (ranging from 0.5 to 2 μg HGF and 2 to 8 μg IGF-1) 30 min after coronary reperfusion. Pigs were sacrificed 21 days later for dose-response relationship evaluation by immunohistopathology or 2 months later for cardiac function evaluation by cardiac magnetic resonance imaging.ResultsThe IGF-1/HGF activated c-kit positive–CD45 negative epCSCs and increased their myogenic differentiation in vitro. The IGF-1/HGF, in a dose-dependent manner, improved cardiomyocyte survival, and reduced fibrosis and cardiomyocyte reactive hypertrophy. It significantly increased c-kit positive–CD45 negative epCSC number and fostered the generation of new myocardium (myocytes and microvasculature) in infarcted and peri-infarct/border regions at 21 and 60 days after AMI. The IGF-1/HGF reduced infarct size and improved left ventricular function at 2 months after AMI.ConclusionsIn an animal model of AMI relevant to the human disease, intracoronary administration of IGF-1/HGF is a practical and effective strategy to reduce pathological cardiac remodeling, induce myocardial regeneration, and improve ventricular function

    Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart

    Get PDF
    ObjectivesThe purpose of this study was to test the ability of insulin-like growth factor (IGF)-1/hepatocyte growth factor (HGF) to activate resident endogenous porcine cardiac stem/progenitor cells (epCSCs) and to promote myocardial repair through a clinically applicable intracoronary injection protocol in a pig model of myocardial infarction (MI) relevant to human disease.BackgroundIn rodents, cardiac stem/progenitor cell (CSC) transplantation as well as in situ activation through intramyocardial injection of specific growth factors has been shown to result in myocardial regeneration after acute myocardial infarction (AMI).MethodsAcute MI was induced in pigs by a 60-min percutaneous transluminal coronary angiography left anterior descending artery occlusion. The IGF-1 and HGF were co-administered through the infarct-related artery in a single dose (ranging from 0.5 to 2 μg HGF and 2 to 8 μg IGF-1) 30 min after coronary reperfusion. Pigs were sacrificed 21 days later for dose-response relationship evaluation by immunohistopathology or 2 months later for cardiac function evaluation by cardiac magnetic resonance imaging.ResultsThe IGF-1/HGF activated c-kit positive–CD45 negative epCSCs and increased their myogenic differentiation in vitro. The IGF-1/HGF, in a dose-dependent manner, improved cardiomyocyte survival, and reduced fibrosis and cardiomyocyte reactive hypertrophy. It significantly increased c-kit positive–CD45 negative epCSC number and fostered the generation of new myocardium (myocytes and microvasculature) in infarcted and peri-infarct/border regions at 21 and 60 days after AMI. The IGF-1/HGF reduced infarct size and improved left ventricular function at 2 months after AMI.ConclusionsIn an animal model of AMI relevant to the human disease, intracoronary administration of IGF-1/HGF is a practical and effective strategy to reduce pathological cardiac remodeling, induce myocardial regeneration, and improve ventricular function
    corecore