17 research outputs found

    Pervasive Growth Reduction in Norway Spruce Forests following Wind Disturbance

    Get PDF
    Background: In recent decades the frequency and severity of natural disturbances by e.g., strong winds and insect outbreaks has increased considerably in many forest ecosystems around the world. Future climate change is expected to further intensify disturbance regimes, which makes addressing disturbances in ecosystem management a top priority. As a prerequisite a broader understanding of disturbance impacts and ecosystem responses is needed. With regard to the effects of strong winds – the most detrimental disturbance agent in Europe – monitoring and management has focused on structural damage, i.e., tree mortality from uprooting and stem breakage. Effects on the functioning of trees surviving the storm (e.g., their productivity and allocation) have been rarely accounted for to date. Methodology/Principal Findings: Here we show that growth reduction was significant and pervasive in a 6.79?million hectare forest landscape in southern Sweden following the storm Gudrun (January 2005). Wind-related growth reduction in Norway spruce (Picea abies (L.) Karst.) forests surviving the storm exceeded 10 % in the worst hit regions, and was closely related to maximum gust wind speed (R 2 = 0.849) and structural wind damage (R 2 = 0.782). At the landscape scale, windrelated growth reduction amounted to 3.0 million m 3 in the three years following Gudrun. It thus exceeds secondary damage from bark beetles after Gudrun as well as the long-term average storm damage from uprooting and stem breakage in Sweden

    Climate simulations for 1880-2003 with GISS modelE

    Get PDF
    We carry out climate simulations for 1880-2003 with GISS modelE driven by ten measured or estimated climate forcings. An ensemble of climate model runs is carried out for each forcing acting individually and for all forcing mechanisms acting together. We compare side-by-side simulated climate change for each forcing, all forcings, observations, unforced variability among model ensemble members, and, if available, observed variability. Discrepancies between observations and simulations with all forcings are due to model deficiencies, inaccurate or incomplete forcings, and imperfect observations. Although there are notable discrepancies between model and observations, the fidelity is sufficient to encourage use of the model for simulations of future climate change. By using a fixed well-documented model and accurately defining the 1880-2003 forcings, we aim to provide a benchmark against which the effect of improvements in the model, climate forcings, and observations can be tested. Principal model deficiencies include unrealistically weak tropical El Nino-like variability and a poor distribution of sea ice, with too much sea ice in the Northern Hemisphere and too little in the Southern Hemisphere. The greatest uncertainties in the forcings are the temporal and spatial variations of anthropogenic aerosols and their indirect effects on clouds.Comment: 44 pages; 19 figures; Final text accepted by Climate Dynamic

    Evaluating EOF-modes against a stochastic null hypothesis

    No full text
    In this paper it is suggested that a stochastic isotropic diffusive process, representing a spatial first order auto regressive process (AR(1)-process), can be used as a null hypothesis for the spatial structure of climate variability. By comparing the leading empirical orthogonal functions (EOFs) of a fitted null hypothesis with EOF modes of an observed data set, inferences about the nature of the observed modes can be made. The concept and procedure of fitting the null hypothesis to the observed EOFs is in analogy to time analysis, where an AR(1)-process is fitted to the statistics of the time series in order to evaluate the nature of the time scale behavior of the time series. The formulation of a stochastic null hypothesis allows one to define teleconnection patterns as those modes that are most distinguished from the stochastic null hypothesis. The method is applied to several artificial and real data sets including the sea surface temperature of the tropical Pacific and Indian Ocean and the Northern Hemisphere wintertime and tropical sea level pressure

    An objective analysis of the observed spatial structure of the tropical Indian Ocean SST variability

    No full text
    The observed interannual Indian Ocean sea surface temperature (SST) variability from 1950 to 2008 is analyzed in respect to the spatial structure of the variability. The analysis is based on an objective comparison of the leading empirical orthogonal function modes against the stochastic null hypothesis of spatial red noise (isotropic diffusion). Starting from this red noise assumption, the analysis searches for those structures that are most distinct from the red noise hypothesis. This objective approach will put previously well and less known modes of variability into the context of the multivariate SST variability. The Indian Ocean SST variability is marked by relatively weak SST variability, which is strongly dominated by a basin wide monopole pattern that is caused by different processes. The leading modes of variability are the El Nino Southern Oscillation (ENSO) variability and the warming trend, which both project onto the basin wide monopole structure. Other more characteristic spatial patterns of internal variability are much less dominant in the tropical Indian Ocean, which is quite different from all other ocean basin, where characteristic teleconnection patterns exist. The remaining, ENSO independent, detrended variability is dominated by multi-pole patterns from the southern Indian Ocean reaching into the tropical Indian Ocean, which are probably primarily caused by extra-tropical atmospheric forcings. The large scale tropical Indian Ocean internal variability itself has no dominant structure. The currently often used dipole mode index (DMI) does not appear to present a dominant teleconnection pattern of the Indian Ocean internal SST variability. In the context of the objective analysis presented here, the DMI partly reflects the ENSO variability and is also a representation of the multi-dimensional, chaotic spatial red noise (isotropic diffusion) process. As such the DMI cannot be interpreted as a coherent teleconnection between the two poles
    corecore