44 research outputs found

    Aplikasi Kompos Kulit Buah Kakao Pada Bibit Tanaman Kakao (Theobroma Cacao L.)

    Full text link
    The purpose of this research is to determine the effect of cocoa pods compost and the best dosage on the growth of cocoa seedlings. The research was conducted at the experimental field of the Faculty of Agriculture, University of Riau, Bina Widya Campus KM 12,5 Simpang Baru, Tampan District, Pekanbaru. The experiment was conducted for 4 month started from Februari until June 2016. The research used Completely Randomized Design (CRD), which consist of 8 treatment that are: K1= 0 g/polybag, K2= 25 g/polybag, K3 = 50 g/polybag, K4= 100 g/polybag, K5= 125 g/polybag, K6= 150 g/polybag, K7= 175 g/polybag, 3 replications for each treatment, so that there are 24 experimental units. Each experimental units consisted of three plants. So the total crop was 72 plants and 2 plants from each experimental unit become sample. Data obtained result were statisticall analyzed by analysis of variance and further test of Honestly Significant Difference at 5%. Parameters observed are seedling height, stem diameter, leaves number, leaf area, the ratio of crown roots, and seedling dry weight. The result of the research show that application of cocoa pods compost gave significant effect to the parameter of seedling height, leaves number and leaf area, and non significant effect to the parameter of stem diameter, the ratio of crown roots and seedling dry weight. The application of cocoa pods compost 50 g/polybag gave good effect to the growth of cocoa seedlings

    Phase transitions with finite atom number in the Dicke Model

    Full text link
    Two-level atoms interacting with a one mode cavity field at zero temperature have order parameters which reflect the presence of a quantum phase transition at a critical value of the atom-cavity coupling strength. Two popular examples are the number of photons inside the cavity and the number of excited atoms. Coherent states provide a mean field description, which becomes exact in the thermodynamic limit. Employing symmetry adapted (SA) SU(2) coherent states (SACS) the critical behavior can be described for a finite number of atoms. A variation after projection treatment, involving a numerical minimization of the SA energy surface, associates the finite number phase transition with a discontinuity in the order parameters, which originates from a competition between two local minima in the SA energy surface.Comment: 8 pages, 10 figures, Conference Proceedings of CEWQO-2012, to be published as a Topical Issue of the journal Physica Script

    Design, Synthesis, Characterization, and Evaluation of the Anti-HT-29 Colorectal Cell Line Activity of Novel 8-Oxyquinolinate-Platinum(II)-Loaded Nanostructured Lipid Carriers Targeted with Riboflavin

    Get PDF
    Colorectal cancer is occasionally called colon or rectal cancer, depending on where cancer begins to form, and is the second leading cause of cancer death among both men and women. The platinum-based [PtCl(8-O-quinolinate)(dmso)] (8-QO-Pt) compound has demonstrated encouraging anticancer activity. Three different systems of 8-QO-Pt-encapsulated nanostructured lipid carriers (NLCs) with riboflavin (RFV) were investigated. NLCs of myristyl myristate were synthesized by ultrasonication in the presence of RFV. RFV-decorated nanoparticles displayed a spherical shape and a narrow size dispersion in the range of 144–175 nm mean particle diameter. The 8-QO-Pt-loaded formulations of NLC/RFV with more than 70% encapsulation efficiency showed sustained in vitro release for 24 h. Cytotoxicity, cell uptake, and apoptosis were evaluated in the HT-29 human colorectal adenocarcinoma cell line. The results revealed that 8-QO-Pt-loaded formulations of NLC/RFV showed higher cytotoxicity than the free 8-QO-Pt compound at 5.0 µM. All three systems exhibited different levels of cellular internalization. Moreover, the hemotoxicity assay showed the safety profile of the formulations (less than 3.7%). Taken together, RFV-targeted NLC systems for drug delivery have been investigated for the first time in our study and the results are promising for the future of chemotherapy in colon cancer treatmen

    Climate change adaptation in agriculture: Ex ante analysis of promising and alternative crop technologies using DSSAT and IMPACT

    Get PDF
    Achieving and maintaining global food security is challenged by changes in population, income, and climate, among other drivers. Assessing these challenges and possible solutions over the coming decades requires a rigorous multidisciplinary approach. To answer this challenge, the International Food Policy Research Institute (IFPRI) has developed a system of linked simulation models of global agriculture to do long-run scenario analysis of the effects of climate change and various adaptation strategies. This system includes the core International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT), which is linked to water models (global hydrology, water basin management, and water stress on crops) and crop simulation models. The Global Futures and Strategic Foresight program, a CGIAR initiative led by IFPRI in collaboration with other CGIAR research centers, is working to improve these tools and conducting ex ante assessments of promising technologies, investments, and policies under alternative global futures. Baseline projections from IMPACT set the foundation with the latest outlook on long-term trends in food demand and agricultural production based on projected changes in population, income, technology, and climate. On top of the baseline, scenarios are developed for assessing the impacts of promising climate-adapted technologies for maize, wheat, rice, potatoes, sorghum, groundnut, and cassava on yields, area, production, trade, and prices in 2050 at a variety of scales. Yield gains from adoption of the selected technologies vary by technology and region, but are found to be generally comparable in scale to (and thus able to offset) the adverse effects of climate change under a high-emissions representative concentration pathway (RCP 8.5). Even more important in this long-term climate change scenario are effects of growth in population, income, and investments in overall technological change, highlighting the importance of linked assessment of biophysical and socioeconomic drivers to better understand climate impacts and responses. For all crops in the selected countries, climate change impacts are negative with the baseline technology. All new technologies have beneficial effects on yields under climate change, with combined traits (drought and heat tolerance) showing the greatest benefi
    corecore