198 research outputs found

    Mineralogy of Yamato-791192, HED breccia and relationship between cumulate eucrites and ordinary eucrites

    Get PDF
    Cumulate eucrites and noncumulate (ordinary) eucrites are considered to have come from one (or similar) parent body and to have formed the crust of the Vesta-like asteroid. However, their relationship is not well established as to whether they have crystallized in a different magma or have differentiated within the same magma. We studied mineralogically Yamato-791192,which is a unique HED breccia with abundant cumulate eucrite and a rare ordinary eucrite clasts. The characteristics of pyroxene suggest that the polymict breccia was generated by gathering locally ordinary eucrites and cumulate eucrites. On the other hand, the Fe/Mg distribution shows that the liquid coexisting with most cumulate eucrites was too Fe-rich (mg [=Mg/ (Mg+Fe) atomic ratio]=0.25-0.30) to have crystallized as ordinary eucrites (mg=0.35-0.40). We also applied the liquid trapping model of fractional crystallization and calculate the change of mg of liquid and solid during fractional crystallization. This calculation suggests that if the cumulates include a large amount of residual liquid (40-50%), a cumulate eucrite (mg=0.50-0.55) could crystallize from ordinary eucritic liquid (mg=0.35-0.40). In conclusion, cumulate eucrites probably crystallized directly from slightly evolved liquid, or they are produced by fractional crystallization with a large amount of trapped liquid

    Mineralogy of the Asuka 87 and 88 eucrites and crustal evolution of the HED parent body

    Get PDF
    Mineralogical study of three apparently crystalline eucrites, Asuka (A)-87272,A-881388 and A-881394 revealed that their textures are not primary crystallization products from a magma. A-87272 is a monomict breccia, but the finegrained matrix is recrystallized to a granulitic texture with fine, rounded pyroxene crystals set in a plagioclase matrix. Large fragments of pyroxene are inverted to orthopyroxene with coarse exsolution lamellae on (001) and fine ones on (100). A-881388 contains a large, rounded opaque grain with a tail, and with an ilmenite-chromite-troilite-metal assemblage in fine-grained granulitic silicates, suggesting recrystallization. A-881394 is coarser grained than A-881388 and contains more magnesian pyroxene as in cumulate eucrites, but the plagioclase composition is extremely calcic (An 98) and the grains are composed with a few rounded grains. The A-881394 chromite, showing a pokilitic texture with rounded plagioclase and minor pyroxene, suggests a metamorphic texture. Our present interpretation for a common formation process among these eucrites is that despite their crystalline texture, they might have experienced extensive metamorphism after the initial crystallization in the early history of the crustal evolution

    Mineralogy of Yamato 983885 lunar polymict breccia with a KREEP basalt,a high-Al basalt, a very low-Ti basalt and Mg-rich rocks

    Get PDF
    Y983885 is a polymict regolith breccia with a KREEP basalt, Mg-rich troctolite/norite, a high-Al basalt, a very low-Ti basalt, a granulite originated from ferroan anorthosite, and Si, Na-rich impact spherules. An igneous KREEP basalt is first reported among lunar meteorites to date. The KREEP basalt is mineralogically distinct from Apollo KREEP basalts due to the lack of the typical Ca zoning from orthopyroxene to pigeonite, instead, the presence of the co-existing pigeonite/augite with chemical zonings and micron-scale exsolution. With these mineral characteristics, the KREEP basalt is probably cooled slightly slower than the Apollo KREEP basalts under the subsurface condition such as hypabyssal setting or lava pond. Further study of the additional samples is necessary to fully understand the petrogenesis of this new KREEP basalt. The troctolite and norite are also distinct in lower mg# of mafic minerals and higher modal abundance of olivine in norite, comparing to Apollo troctolites and norites, implying the existence of a rock type with intermediate modal abundance between norite and troctolite, and the compositional diversity of Mg-rich lithologies. Simultaneous occurrence of a KREEP basalt and a genetically KREEP-related, high-Al basalt, a Mg-rich troctolite/norite and the Si, Na-rich impact glasses can constrain the source region of Y983885 to the KREEP-rich Procellarum terrane in the northwestern hemisphere of the lunar nearside

    Petrology and reflectance spectroscopy of lunar meteorite Yamato 981031: Implications for the source region of the meteorite and remote-sensing spectroscopy

    Get PDF
    Combined mineralogy and reflectance spectroscopy of lunar meteorite Yamato (Y) 981031 were investigated to determine its possible source region. Mineralogical observations indicate that Y981031 is a mixture of mafic mare and feldspathic highland components. Y981031 has abundant mineral fragments and lithic clasts in a comminuted matrix. Although the most of the lithic clasts are pyroxene-dominant basaltic clasts, some plagioclase-rich lithic fragments are also present. High- and low-Ca pyroxene grains with wide compositional variations are included in the breccia. Since high-Ca pyroxene (Wo43En40Fs17 to Wo29En23Fs48) and a part of Fe-rich low-Ca pyroxene are found in pyroxene-dominant basaltic clasts, they were derived from mare materials. In contrast, abundant Mg-rich low-Ca pyroxene (approximately Wo10En63Fs27) is of highland origin because their chemical compositions resemble highland low-Ca pyroxene. Fusion crust glass compositions (TiO2=0.50-0.77wt and FeO=11.7-15.4wt) suggest that source mafic components of Y981031 have very low-Ti (VLT) affinity. In comparison with global remote-sensing data, the above TiO2 and FeO concentrations resemble those of the VLT affinity in Mare Frigoris and adjacent maria. Thus, we propose that Y981031 was launched from this area. Modified gaussian model analysis of reflectance spectrum shows absorption features of high-Ca pyroxene (mare-origin) and Mg-rich low-Ca pyroxene (highland-origin), and enables us to observe separately mineralogical characteristics of each end member of Y981031 as the soil mixture

    Boninite and Harzburgite from Leg 125 (Bonin-Mariana Forearc): A Case Study of Magma Genesis during the Initial Stages of Subduction

    No full text
    Holes drilled into the volcanic and ultrabasic basement of the Izu-Ogasawara and Mariana forearc terranes during Leg 125 provide data on some of the earliest lithosphere created after the start of Eocene subduction in the Western Pacific. The volcanic basement contains three boninite series and one tholeiite series. (1) Eocene low-Ca boninite and low-Ca bronzite andesite pillow lavas and dikes dominate the lowermost part of the deep crustal section through the outer-arc high at Site 786. (2) Eocene intermediate-Ca boninite and its fractionation products (bronzite andesite, andesite, dacite, and rhyolite) make up the main part of the boninitic edifice at Site 786. (3) Early Oligocene intermediate-Ca to high-Ca boninite sills or dikes intrude the edifice and perhaps feed an uppermost breccia unit at Site 786. (4) Eocene or Early Oligocene tholeiitic andesite, dacite, and rhyolite form the uppermost part of the outer-arc high at Site 782. All four groups can be explained by remelting above a subduction zone of oceanic mantle lithosphere that has been depleted by its previous episode of partial melting at an ocean ridge. We estimate that the average boninite source had lost 10-15 wt% of melt at the ridge before undergoing further melting (5-10%) shortly after subduction started. The composition of the harzburgite (<2% clinopyroxene, Fo content of about 92%) indicates that it underwent a total of about 25% melting with respect to a fertile MORB mantle. The low concentration of Nb in the boninite indicates that the oceanic lithosphere prior to subduction was not enriched by any asthenospheric (OIB) component. The subduction component is characterized by (1) high Zr and Hf contents relative to Sm, Ti, Y, and middle-heavy REE, (2) light REE-enrichment, (3) low contents of Nb and Ta relative to Th, Rb, or La, (4) high contents of Na and Al, and (5) Pb isotopes on the Northern Hemisphere Reference Line. This component is unlike any subduction component from active arc volcanoes in the Izu-Mariana region or elsewhere. Modeling suggests that these characteristics fit a trondhjemitic melt from slab fusion in amphibolite facies. The resulting metasomatized mantle may have contained about 0.15 wt% water. The overall melting regime is constrained by experimental data to shallow depths and high temperatures (1250°C and 1.5 kb for an average boninite) of boninite segregation. We thus envisage that boninites were generated by decompression melting of a diapir of metasomatized residual MORB mantle leaving the harzburgites as the uppermost, most depleted residue from this second stage of melting. Thermal constraints require that both subducted lithosphere and overlying oceanic lithosphere of the mantle wedge be very young at the time of boninite genesis. This conclusion is consistent with models in which an active transform fault offsetting two ridge axes is placed under compression or transpression following the Eocene plate reorganization in the Pacific. Comparison between Leg 125 boninites and boninites and related rocks elsewhere in the Western Pacific highlights large regional differences in petrogenesis in terms of mantle mineralogy, degree of partial melting, composition of subduction components, and the nature of pre-subduction lithosphere. It is likely that, on a regional scale, the initiation of subduction involved subducted crust and lithospheric mantle wedge of a range of ages and compositions, as might be expected in this type of tectonic setting

    Missing western half of the Pacific Plate: Geochemical nature of the Izanagi-Pacific Ridge interaction with a stationary boundary between the Indian and Pacific mantles

    Get PDF
    The source mantle of the basaltic ocean crust on the western half of the Pacific Plate was examined using Pb–Nd–Hf isotopes. The results showed that the subducted Izanagi–Pacific Ridge (IPR) formed from both Pacific (180–∼80 Ma) and Indian (∼80–70 Ma) mantles. The western Pacific Plate becomes younger westward and is thought to have formed from the IPR. The ridge was subducted along the Kurile–Japan–Nankai–Ryukyu (KJNR) Trench at 60–55 Ma and leading edge of the Pacific Plate is currently stagnated in the mantle transition zone. Conversely, the entire eastern half of the Pacific Plate, formed from isotopically distinct Pacific mantle along the East Pacific Rise and the Juan de Fuca Ridge, largely remains on the seafloor. The subducted IPR is inaccessible; therefore, questions regarding which mantle might be responsible for the formation of the western half of the Pacific Plate remain controversial. Knowing the source of the IPR basalts provides insight into the Indian–Pacific mantle boundary before the Cenozoic. Isotopic compositions of the basalts from borehole cores (165–130 Ma) in the western Pacific show that the surface oceanic crust is of Pacific mantle origin. However, the accreted ocean floor basalts (∼80–70 Ma) in the accretionary prism along the KJNR Trench have Indian mantle signatures. This indicates the younger western Pacific Plate of IPR origin formed partly from Indian mantle and that the Indian–Pacific mantle boundary has been stationary in the western Pacific at least since the Cretaceous

    Inhibition of the Nuclear Import of Cubitus Interruptus by Roadkill in the Presence of Strong Hedgehog Signal

    Get PDF
    Hedgehog (Hh) signalling plays an important role in various developmental processes by activating the Cubitus interruptus (Ci)/Glioblastoma (Gli) family of transcription factors. In the process of proper pattern formation, Ci activity is regulated by multiple mechanisms, including processing, trafficking, and degradation. However, it remains elusive how Ci distinctly recognizes the strong and moderate Hh signals. Roadkill (Rdx) induces Ci degradation in the anterior region of the Drosophila wing disc. Here, we report that Rdx inhibited Ci activity by two different mechanisms. In the region abutting the anterior/posterior boundary, which receives strong Hh signal, Rdx inhibited the nuclear import of Ci by releasing importin α3 from Ci. In this region, Rdx negatively regulated the expression of transcription factor Knot/Collier. In farther anterior regions receiving moderate levels of Hh signal, Rdx induced Ci degradation, as reported previously. Thus, two different mechanisms by which Rdx negatively regulates Ci may play an important role in the fine-tuning of Hh responses

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore