5 research outputs found
Pseudomonas aeruginosa Bloodstream Infections in Patients with Cancer: Differences between Patients with Hematological Malignancies and Solid Tumors
Objectives: To assess the clinical features and outcomes of Pseudomonas aeruginosa bloodstream infection (PA BSI) in neutropenic patients with hematological malignancies (HM) and with solid tumors (ST), and identify the risk factors for 30-day mortality. Methods: We performed a large multicenter, retrospective cohort study including onco-hematological neutropenic patients with PA BSI conducted across 34 centers in 12 countries (January 2006-May 2018). Episodes occurring in hematologic patients were compared to those developing in patients with ST. Risk factors associated with 30-day mortality were investigated in both groups. Results: Of 1217 episodes of PA BSI, 917 occurred in patients with HM and 300 in patients with ST. Hematological patients had more commonly profound neutropenia (0.1 x 10(9) cells/mm) (67% vs. 44.6%; p < 0.001), and a high risk Multinational Association for Supportive Care in Cancer (MASCC) index score (32.2% vs. 26.7%; p = 0.05). Catheter-infection (10.7% vs. 4.7%; p = 0.001), mucositis (2.4% vs. 0.7%; p = 0.042), and perianal infection (3.6% vs. 0.3%; p = 0.001) predominated as BSI sources in the hematological patients, whereas pneumonia (22.9% vs. 33.7%; p < 0.001) and other abdominal sites (2.8% vs. 6.3%; p = 0.006) were more common in patients with ST. Hematological patients had more frequent BSI due to multidrug-resistant P. aeruginosa (MDRPA) (23.2% vs. 7.7%; p < 0.001), and were more likely to receive inadequate initial antibiotic therapy (IEAT) (20.1% vs. 12%; p < 0.001). Patients with ST presented more frequently with septic shock (45.8% vs. 30%; p < 0.001), and presented worse outcomes, with increased 7-day (38% vs. 24.2%; p < 0.001) and 30-day (49% vs. 37.3%; p < 0.001) case-fatality rates. Risk factors for 30-day mortality in hematologic patients were high risk MASCC index score, IEAT, pneumonia, infection due to MDRPA, and septic shock. Risk factors for 30-day mortality in patients with ST were high risk MASCC index score, IEAT, persistent BSI, and septic shock. Therapy with granulocyte colony-stimulating factor was associated with survival in both groups. Conclusions: The clinical features and outcomes of PA BSI in neutropenic cancer patients showed some differences depending on the underlying malignancy. Considering these differences and the risk factors for mortality may be useful to optimize their therapeutic management. Among the risk factors associated with overall mortality, IEAT and the administration of granulocyte colony-stimulating factor were the only modifiable variables
Pseudomonas aeruginosa bloodstream infections in patients with cancer: Differences between patients with hematological malignancies and solid tumors
Objectives: To assess the clinical features and outcomes of Pseudomonas aeruginosa bloodstream infection (PA BSI) in neutropenic patients with hematological malignancies (HM) and with solid tumors (ST), and identify the risk factors for 30-day mortality. Methods: We performed a large multicenter, retrospective cohort study including onco-hematological neutropenic patients with PA BSI conducted across 34 centers in 12 countries (January 2006−May 2018). Episodes occurring in hematologic patients were compared to those developing in patients with ST. Risk factors associated with 30-day mortality were investigated in both groups. Results: Of 1217 episodes of PA BSI, 917 occurred in patients with HM and 300 in patients with ST. Hematological patients had more commonly profound neutropenia (0.1 × 109 cells/mm) (67% vs. 44.6%; p < 0.001), and a high risk Multinational Association for Supportive Care in Cancer (MASCC) index score (32.2% vs. 26.7%; p = 0.05). Catheter-infection (10.7% vs. 4.7%; p = 0.001), mucositis (2.4% vs. 0.7%; p = 0.042), and perianal infection (3.6% vs. 0.3%; p = 0.001) predominated as BSI sources in the hematological patients, whereas pneumonia (22.9% vs. 33.7%; p < 0.001) and other abdominal sites (2.8% vs. 6.3%; p = 0.006) were more common in patients with ST. Hematological patients had more frequent BSI due to multidrug-resistant P. aeruginosa (MDRPA) (23.2% vs. 7.7%; p < 0.001), and were more likely to receive inadequate initial antibiotic therapy (IEAT) (20.1% vs. 12%; p < 0.001). Patients with ST presented more frequently with septic shock (45.8% vs. 30%; p < 0.001), and presented worse outcomes, with increased 7-day (38% vs. 24.2%; p < 0.001) and 30-day (49% vs. 37.3%; p < 0.001) case-fatality rates. Risk factors for 30-day mortality in hematologic patients were high risk MASCC index score, IEAT, pneumonia, infection due to MDRPA, and septic shock. Risk factors for 30-day mortality in patients with ST were high risk MASCC index score, IEAT, persistent BSI, and septic shock. Therapy with granulocyte colony-stimulating factor was associated with survival in both groups. Conclusions: The clinical features and outcomes of PA BSI in neutropenic cancer patients showed some differences depending on the underlying malignancy. Considering these differences and the risk factors for mortality may be useful to optimize their therapeutic management. Among the risk factors associated with overall mortality, IEAT and the administration of granulocyte colony-stimulating factor were the only modifiable variables
Effect of combination antibiotic empirical therapy on mortality in neutropenic cancer patients with pseudomonas aeruginosa pneumonia
To assess the effect of combination antibiotic empirical therapy on 30-day case-fatality rate in neutropenic cancer patients with Pseudomonas aeruginosa (PA) bacteremic pneumonia. This was a multinational, retrospective cohort study of neutropenic onco-hematological patients with PA bloodstream infection (BSI) (2006-2018). The effect of appropriate empirical combination therapy, appropriate monotherapy and inappropriate empirical antibiotic therapy [IEAT] on 30-day case-fatality was assessed only in patients with PA bacteremic pneumonia. Among 1017 PA BSI episodes, pneumonia was the source of BSI in 294 (28.9%). Among those, 52 (17.7%) were caused by a multidrug-resistant (MDR) strain and 68 (23.1%) received IEAT, mainly when the infection was caused by an MDR strain [38/52 (73.1%) vs. 30/242 (12.4%); p < 0.001]. The 30-day case-fatality rate was higher in patients with PA bacteremic pneumonia than in those with PA BSI from other sources (55.1% vs. 31.4%; p < 0.001). IEAT was associated with increased 30-day case-fatality (aHR 1.44 [95%CI 1.01-2.03]; p = 0.042), whereas the use of appropriate combination empirical treatment was independently associated with improved survival (aHR 0.46 [95%CI 0.27-0.78]; p = 0.004). Appropriate empirical monotherapy was not associated with improved overall survival (aHR 1.25 [95%CI 0.76-2.05]; p = 0.39). Combination antibiotic empirical therapy should be administered promptly in febrile neutropenic patients with suspected pneumonia as the source of infection
Impact of antibiotic resistance on outcomes of neutropenic cancer patients with Pseudomonas aeruginosa bacteraemia (IRONIC study): study protocol of a retrospective multicentre international study
INTRODUCTION: Pseudomonas aeruginosa (PA) has historically been one of the major causes of severe sepsis and death among neutropenic cancer patients. There has been a recent increase of multidrug-resistant PA (MDRPA) isolates that may determine a worse prognosis, particularly in immunosuppressed patients. The aim of this study is to establish the impact of antibiotic resistance on the outcome of neutropenic onco-haematological patients with PA bacteraemia, and to identify the risk factors for MDRPA bacteraemia and mortality. METHODS AND ANALYSIS: This is a retrospective, observational, multicentre, international study. All episodes of PA bacteraemia occurring in neutropenic onco-haematological patients followed up at the participating centres from 1 January 2006 to 31 May 2018 will be retrospectively reviewed. The primary end point will be overall case-fatality rate within 30 days of onset of PA bacteraemia. The secondary end points will be to describe the following: the incidence and risk factors for multidrug-resistant and extremely drug-resistant PA bacteraemia (by comparing the episodes due to susceptible PA with those produced by MDRPA), the efficacy of ceftolozane/tazobactam, the rates of persistent bacteraemia and bacteraemia relapse and the risk factors for very early (48 hours), early (7 days) and overall (30 days) case-fatality rates. ETHICS AND DISSEMINATION: The Clinical Research Ethics Committee of Bellvitge University Hospital approved the protocol of the study at the primary site. To protect personal privacy, identifying information of each patient in the electronic database will be encrypted. The processing of the patients' personal data collected in the study will comply with the Spanish Data Protection Act of 1998 and with the European Directive on the privacy of data. All data collected, stored and processed will be anonymised. Results will be reported at conferences and in peer-reviewed publications
Clinical Predictive Model of Multidrug Resistance in Neutropenic Cancer Patients with Bloodstream Infection Due to Pseudomonas aeruginosa.
We aimed to assess the rate and predictive factors of bloodstream infection (BSI) due to multidrug-resistant (MDR) Pseudomonas aeruginosa in neutropenic cancer patients. We performed a multicenter, retrospective cohort study including oncohematological neutropenic patients with BSI due to P. aeruginosa conducted across 34 centers in 12 countries from January 2006 to May 2018. A mixed logistic regression model was used to estimate a model to predict the multidrug resistance of the causative pathogens. Of a total of 1,217 episodes of BSI due to P. aeruginosa, 309 episodes (25.4%) were caused by MDR strains. The rate of multidrug resistance increased significantly over the study period (P = 0.033). Predictors of MDR P. aeruginosa BSI were prior therapy with piperacillin-tazobactam (odds ratio [OR], 3.48; 95% confidence interval [CI], 2.29 to 5.30), prior antipseudomonal carbapenem use (OR, 2.53; 95% CI, 1.65 to 3.87), fluoroquinolone prophylaxis (OR, 2.99; 95% CI, 1.92 to 4.64), underlying hematological disease (OR, 2.09; 95% CI, 1.26 to 3.44), and the presence of a urinary catheter (OR, 2.54; 95% CI, 1.65 to 3.91), whereas older age (OR, 0.98; 95% CI, 0.97 to 0.99) was found to be protective. Our prediction model achieves good discrimination and calibration, thereby identifying neutropenic patients at higher risk of BSI due to MDR P. aeruginosa The application of this model using a web-based calculator may be a simple strategy to identify high-risk patients who may benefit from the early administration of broad-spectrum antibiotic coverage against MDR strains according to the local susceptibility patterns, thus avoiding the use of broad-spectrum antibiotics in patients at a low risk of resistance development