174 research outputs found
Active colloidal particles in emulsion droplets: A model system for the cytoplasm
In living cells, molecular motors create activity that enhances the diffusion
of particles throughout the cytoplasm, and not just ones attached to the
motors. We demonstrate initial steps toward creating artificial cells that
mimic this phenomenon. Our system consists of active, Pt-coated Janus particles
and passive tracers confined to emulsion droplets. We track the motion of both
the active particles and passive tracers in a hydrogen peroxide solution, which
serves as the fuel to drive the motion. We first show that correcting for bulk
translational and rotational motion of the droplets induced by bubble formation
is necessary to accurately track the particles. After drift correction, we find
that the active particles show enhanced diffusion in the interior of the
droplets and are not captured by the droplet interface. At the particle and
hydrogen peroxide concentrations we use, we observe little coupling between the
active and passive particles. We discuss the possible reasons for lack of
coupling and describe ways to improve the system to more effectively mimic
cytoplasmic activity
Lipid Self-Spreading on Solid Substrates
This chapter is dedicated to wetting and fracturing processes involving molecular phospholipid films and high-energy solid surfaces. In these systems, wetting of planar surfaces occurs in an aqueous environment by means of self-spreading of phospholipid membranes from artificially generated lipid sources, which range from manually deposited single sources (multilamellar liposomes) to liposome suspensions of different particle sizes, which are directly pipetted onto the substrate. The most prominent of the molecular lipid films is the phospholipid bilayer, which constitutes the fundamental structure of the biological cell membrane. Lipid membranes have peculiar characteristics, are highly dynamic, feature two-dimensional fluidity, and can accommodate functional molecules. Understanding the interactions of lipid films with solid interfaces is of high importance in areas like cell biology, biomedical engineering, and drug delivery
A microfluidics-integrated impedance/surface acoustic resonance tandem sensor
We demonstrate a dual sensor concept for lab-on-a-chip in-liquid sensing through integration of surface acoustic wave resonance (SAR) sensing with electrochemical impedance spectroscopy (EIS) in a single device. In this concept, the EIS is integrated within the building blocks of the SAR sensor, but features a separate electrical port. The two-port sensor was designed, fabricated, and embedded in a soft polymer microfluidic delivery system, and subsequently characterized. The SAR-EIS tandem sensor features low cross-talk between SAR and EIS ports, thus promoting non-interfering gravimetric and impedimetric measurements. The EIS was characterized by means of the modified Randle\u27s cell lumped element model. Four sensitive parameters could be established from the tandem sensor readout, and subsequently employed in a proof of principle study of liposome layers and their interaction with Ca2+ ions, leading to transformation into molecular film structures. The associated shift of the sensing quantities is analysed and discussed. The combination of impedimetric and gravimetric sensing quantities provides a unique and detailed description of physicochemical surface phenomena as compared to a single mode sensing routine
Kadınlarda Doğum Şekli ile Postpartum Depresif Belirtiler Arasındaki İlişki
Amaç: Son yıllarda giderek artan sıklıkta görülen Postpartum Depresyonun (PPD) ülkemizdeki prevalansı %14 ile %41 arasında değişmektedir. Bu durumun oluşmasında düşük sosyoekonomik düzey, istem dışı gebelik, geçirilmiş depresyon öyküsü, düşük eğitim düzeyi gibi birçok risk faktörü tanımlanmıştır. Bununla birlikte tüm dünyada artmakta olan sezaryen oranları nedeniyle sezaryen doğumun (C/S) postpartum psikolojik etkilerini saptamak önem kazanmaktadır. Bu çalışmanın amacı, doğum şeklinin postpartum depresif semptomların (PPDS) gelişimine etkisini araştırmaktır.
Yöntem: Ankara Atatürk Eğitim ve Araştırma Hastanesi Kadın Hastalıkları ve Doğum polikliniklerine 1 Mart- 1 Haziran 2013 tarihleri arasında başvuran, postpartum ilk 8 hafta içerisinde olan, 18-49 yaş grubundaki 249 kadın araştırmaya dahil edildi. Edinburgh Doğum Sonrası Depresyon Ölçeği (EPDS) ve annelerin yaş, eğitim durumu, gelir düzeyi ve istemli gebelik durumu, geçirilmiş depresyon öyküsü, doğum şekli, bebeğin beslenme durumu, annenin çalışma durumu gibi sosyodemografik özellikleri ile ilgili 20 sorudan oluşan anket uygulandı. Veriler SPSS 18.0 istatistik paket programı kullanılarak değerlendirildi. İstatistiksel anlamlılık düzeyi
Peridynamic Modeling of Ruptures in Biomembranes
We simulate the formation of spontaneous ruptures in supported phospholipid double bilayer membranes, using peridynamic modeling. Experiments performed on spreading double bilayers typically show two distinct kinds of ruptures, floral and fractal, which form spontaneously in the distal (upper) bilayer at late stages of double bilayer formation on high energy substrates. It is, however, currently unresolved which factors govern the occurrence of either rupture type. Variations in the distance between the two bilayers, and the occurrence of interconnections (“pinning sites”) are suspected of contributing to the process. Our new simulations indicate that the pinned regions which form, presumably due to Ca2+ ions serving as bridging agent between the distal and the proximal bilayer, act as nucleation sites for the ruptures. Moreover, assuming that the pinning sites cause a non-zero shear modulus, our simulations also show that they change the rupture mode from floral to fractal. At zero shear modulus the pores appear to be circular, subsequently evolving into floral pores. With increasing shear modulus the pore edges start to branch, favoring fractal morphologies. We conclude that the pinning sites may indirectly determine the rupture morphology by contributing to shear stress in the distal membrane
Protocells: Milestones and Recent Advances
The origin of life is still one of humankind\u27s great mysteries. At the transition between nonliving and living matter, protocells, initially featureless aggregates of abiotic matter, gain the structure and functions necessary to fulfill the criteria of life. Research addressing protocells as a central element in this transition is diverse and increasingly interdisciplinary. The authors review current protocell concepts and research directions, address milestones, challenges and existing hypotheses in the context of conditions on the early Earth, and provide a concise overview of current protocell research methods
Genome-wide association studies reveal novel loci controlling tuber flesh color and oxidative browning in Dioscorea alata
Background: Consumers' preferences for food crops are guided by quality attributes. This study aimed at deciphering the genetic basis of quality traits, especially tuber flesh color (FC) and oxidative browning (OB) in Dioscorea alata, based on the genome-wide association studies (GWAS) approach. The D. alata panel was planted at two locations in Guadeloupe. At harvest, the FC was scored visually as white, cream, or purple on longitudinally sliced mature tubers. The OB was scored visually as the presence or absence of browning after 15 minutes of exposure of the sliced samples to ambient air. Results: Phenotypic characterization for FC and OB of a diverse panel of D. alata genotypes highlighted significant variation within the panel and across two locations. The genotypes within the panel displayed a weak structure and could be classified into 3 subpopulations. GWAS identified 14 and 4 significant associations for tuber FC and OB, respectively, with phenotypic variance, explained values ranging from 7.18 to 18.04%. Allele segregation analysis at the significantly associated loci highlighted the favorable alleles for the desired traits, i.e., white FC and no OB. A total of 24 putative candidate genes were identified around the significant signals. A comparative analysis with previously reported quantitative trait loci indicated that numerous genomic regions control these traits in D. alata. Conclusion: Our study provides important insights into the genetic control of tuber FC and OB in D. alata. The major and stable loci can be further utilized to improve selection in breeding programs for developing new cultivars with enhanced tuber quality
Spontaneous Formation and Rearrangement of Artificial Lipid Nanotube Networks as a Bottom-Up Model for Endoplasmic Reticulum
We present a convenient method to form a bottom-up structural organelle model for the endoplasmic reticulum (ER). The model consists of highly dense lipidic nanotubes that are, in terms of morphology and dynamics, reminiscent of ER. The networks are derived from phospholipid double bilayer membrane patches adhering to a transparent Al2O3 substrate. The adhesion is mediated by Ca2+ in the ambient buffer. Subsequent depletion of Ca2+ by means of BAPTA/EDTA causes retraction of the membrane, resulting in spontaneous lipid nanotube network formation. The method only comprises phospholipids and microfabricated surfaces for simple formation of an ER model and does not require the addition of proteins or chemical energy (e.g., GTP or ATP). In contrast to the 3D morphology of the cellular endoplasmic reticulum, the model is two-dimensional (albeit the nanotube dimensions, geometry, structure, and dynamics are maintained). This unique in vitro ER model consists of only a few components, is easy to construct, and can be observed under a light microscope. The resulting structure can be further decorated for additional functionality, such as the addition of ER-associated proteins or particles to study transport phenomena among the tubes. The artificial networks described here are suitable structural models for the cellular ER, whose unique characteristic morphology has been shown to be related to its biological function, whereas details regarding formation of the tubular domain and rearrangements within are still not completely understood. We note that this method uses Al2O3 thin-film-coated microscopy coverslips, which are commercially available but require special orders. Therefore, it is advisable to have access to a microfabrication facility for preparation
Did Solid Surfaces Enable the Origin of Life?
In this perspective article, I discuss whether and how solid surfaces could have played a key role in the formation of membranous primitive cells on the early Earth. I argue why surface energy could have been used by prebiotic amphiphile assemblies for unique morphological transformations, and present recent experimental findings showing the surface-dependent formation and behavior of sophisticated lipid membrane structures. Finally, I discuss the possible unique contributions of such surface-adhered architectures to the transition from prebiotic matter to living systems
- …
