61 research outputs found

    Expression of Drosophila virilis Retroelements and Role of Small RNAs in Their Intrastrain Transposition

    Get PDF
    Transposition of two retroelements (Ulysses and Penelope) mobilized in the course of hybrid dysgenesis in Drosophila virilis has been investigated by in situ hybridization on polytene chromosomes in two D. virilis strains of different cytotypes routinely used to get dysgenic progeny. The analysis has been repeatedly performed over the last two decades, and has revealed transpositions of Penelope in one of the strains, while, in the other strain, the LTR-containing element Ulysses was found to be transpositionally active. The gypsy retroelement, which has been previously shown to be transpositionally inactive in D. virilis strains, was also included in the analysis. Whole mount is situ hybridization with the ovaries revealed different subcellular distribution of the transposable elements transcripts in the strains studied. Ulysses transpositions occur only in the strain where antisense piRNAs homologous to this TE are virtually absent and the ping-pong amplification loop apparently does not take place. On the other hand small RNAs homologous to Penelope found in the other strain, belong predominantly to the siRNA category (21nt), and consist of sense and antisense species observed in approximately equal proportion. The number of Penelope copies in the latter strain has significantly increased during the last decades, probably because Penelope-derived siRNAs are not maternally inherited, while the low level of Penelope-piRNAs, which are faithfully transmitted from mother to the embryo, is not sufficient to silence this element completely. Therefore, we speculate that intrastrain transposition of the three retroelements studied is controlled predominantly at the post-transcriptional level

    Experimental evidence for splicing of intron-containing transcripts of plant LTR retrotransposon Ogre

    Get PDF
    Ogre elements are a distinct group of plant Ty3/gypsy-like retrotransposons characterized by several specific features, one of which is a separation of the gag-pol region into two non-overlapping open reading frames: ORF2 coding for Gag-Pro, and ORF3 coding for RT/RH-INT proteins. Previous characterization of Ogre elements from several plant species revealed that part of their transcripts lacks the region between ORF2 and ORF3, carrying one uninterrupted ORF instead. In this work, we investigated a hypothesis that this region represents an intron that is spliced out from part of the Ogre transcripts as a means for preferential production of ORF2-encoded proteins over those encoded by the complete ORF2–ORF3 region. The experiments involved analysis of transcription patterns of well-defined Ogre populations in a model plant Medicago truncatula and examination of transcripts carrying dissected pea Ogre intron expressed within a coding sequence of chimeric reporter gene. Both experimental approaches proved that the region between ORF2 and ORF3 is spliced from Ogre transcripts and showed that this process is only partial, probably due to weak splice signals. This is one of very few known cases of spliced LTR retrotransposons and the only one where splicing does not involve parts of the element’s coding sequences, thus resembling intron splicing found in most cellular genes

    Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Giardia intestinalis </it>is a protozoan parasite that causes diarrhea in a wide range of mammalian species. To further understand the genetic diversity between the <it>Giardia intestinalis </it>species, we have performed genome sequencing and analysis of a wild-type <it>Giardia intestinalis </it>sample from the assemblage E group, isolated from a pig.</p> <p>Results</p> <p>We identified 5012 protein coding genes, the majority of which are conserved compared to the previously sequenced genomes of the WB and GS strains in terms of microsynteny and sequence identity. Despite this, there is an unexpectedly large number of chromosomal rearrangements and several smaller structural changes that are present in all chromosomes. Novel members of the VSP, NEK Kinase and HCMP gene families were identified, which may reveal possible mechanisms for host specificity and new avenues for antigenic variation. We used comparative genomics of the three diverse <it>Giardia intestinalis </it>isolates P15, GS and WB to define a core proteome for this species complex and to identify lineage-specific genes. Extensive analyses of polymorphisms in the core proteome of <it>Giardia </it>revealed differential rates of divergence among cellular processes.</p> <p>Conclusions</p> <p>Our results indicate that despite a well conserved core of genes there is significant genome variation between <it>Giardia </it>isolates, both in terms of gene content, gene polymorphisms, structural chromosomal variations and surface molecule repertoires. This study improves the annotation of the <it>Giardia </it>genomes and enables the identification of functionally important variation.</p

    Eukaryote DIRS1-like retrotransposons: an overview

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DIRS1-like elements compose one superfamily of tyrosine recombinase-encoding retrotransposons. They have been previously reported in only a few diverse eukaryote species, describing a patchy distribution, and little is known about their origin and dynamics. Recently, we have shown that these retrotransposons are common among decapods, which calls into question the distribution of DIRS1-like retrotransposons among eukaryotes.</p> <p>Results</p> <p>To determine the distribution of DIRS1-like retrotransposons, we developed a new computational tool, ReDoSt, which allows us to identify well-conserved DIRS1-like elements. By screening 274 completely sequenced genomes, we identified more than 4000 DIRS1-like copies distributed among 30 diverse species which can be clustered into roughly 300 families. While the diversity in most species appears restricted to a low copy number, a few bursts of transposition are strongly suggested in certain species, such as <it>Danio rerio </it>and <it>Saccoglossus kowalevskii</it>.</p> <p>Conclusion</p> <p>In this study, we report 14 new species and 8 new higher taxa that were not previously known to harbor DIRS1-like retrotransposons. Now reported in 61 species, these elements appear widely distributed among eukaryotes, even if they remain undetected in streptophytes and mammals. Especially in unikonts, a broad range of taxa from Cnidaria to Sauropsida harbors such elements. Both the distribution and the similarities between the DIRS1-like element phylogeny and conventional phylogenies of the host species suggest that DIRS1-like retrotransposons emerged early during the radiation of eukaryotes.</p

    Genome Evolution of Asexual Organisms and the Paradox of Sex in Eukaryotes

    Get PDF

    Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus

    Get PDF
    Nuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. Although this concept has become textbook knowledge, it is only based on studying a few loci, including 45S rDNA. To provide a more comprehensive insight into the genetic makeup of arbuscular endomycorrhizal fungi, we applied de novo genome sequencing of individual nuclei of Rhizophagus irregularis. This revealed a surprisingly low level of polymorphism between nuclei. In contrast, within a nucleus, the 45S rDNA repeat unit turned out to be highly diverged. This finding demystifies a long-lasting hypothesis on the complex genetic makeup of arbuscular endomycorrhizal fungi. Subsequent genome assembly resulted in the first draft reference genome sequence of an arbuscular endomycorrhizal fungus. Its length is 141 Mbps, representing over 27,000 protein-coding gene models. We used the genomic sequence to reinvestigate the phylogenetic relationships of Rhizophagus irregularis with other fungal phyla. This unambiguously demonstrated that Glomeromycota are more closely related to Mucoromycotina than to its postulated sister Dikarya

    Fosmid library end sequencing reveals a rarely known genome structure of marine shrimp Penaeus monodon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The black tiger shrimp (<it>Penaeus monodon</it>) is one of the most important aquaculture species in the world, representing the crustacean lineage which possesses the greatest species diversity among marine invertebrates. Yet, we barely know anything about their genomic structure. To understand the organization and evolution of the <it>P. monodon </it>genome, a fosmid library consisting of 288,000 colonies and was constructed, equivalent to 5.3-fold coverage of the 2.17 Gb genome. Approximately 11.1 Mb of fosmid end sequences (FESs) from 20,926 non-redundant reads representing 0.45% of the <it>P. monodon </it>genome were obtained for repetitive and protein-coding sequence analyses.</p> <p>Results</p> <p>We found that microsatellite sequences were highly abundant in the <it>P. monodon </it>genome, comprising 8.3% of the total length. The density and the average length of microsatellites were evidently higher in comparison to those of other taxa. AT-rich microsatellite motifs, especially poly (AT) and poly (AAT), were the most abundant. High abundance of microsatellite sequences were also found in the transcribed regions. Furthermore, <it>via </it>self-BlastN analysis we identified 103 novel repetitive element families which were categorized into four groups, <it>i.e</it>., 33 WSSV-like repeats, 14 retrotransposons, 5 gene-like repeats, and 51 unannotated repeats. Overall, various types of repeats comprise 51.18% of the <it>P. monodon </it>genome in length. Approximately 7.4% of the FESs contained protein-coding sequences, and the Inhibitor of Apoptosis Protein (IAP) gene and the Innexin 3 gene homologues appear to be present in high abundance in the <it>P. monodon </it>genome.</p> <p>Conclusions</p> <p>The redundancy of various repeat types in the <it>P. monodon </it>genome illustrates its highly repetitive nature. In particular, long and dense microsatellite sequences as well as abundant WSSV-like sequences highlight the uniqueness of genome organization of penaeid shrimp from those of other taxa. These results provide substantial improvement to our current knowledge not only for shrimp but also for marine crustaceans of large genome size.</p

    C. elegans Germ Cells Show Temperature and Age-Dependent Expression of Cer1, a Gypsy/Ty3-Related Retrotransposon

    Get PDF
    Virus-like particles (VLPs) have not been observed in Caenorhabditis germ cells, although nematode genomes contain low numbers of retrotransposon and retroviral sequences. We used electron microscopy to search for VLPs in various wild strains of Caenorhabditis, and observed very rare candidate VLPs in some strains, including the standard laboratory strain of C. elegans, N2. We identified the N2 VLPs as capsids produced by Cer1, a retrotransposon in the Gypsy/Ty3 family of retroviruses/retrotransposons. Cer1 expression is age and temperature dependent, with abundant expression at 15°C and no detectable expression at 25°C, explaining how VLPs escaped detection in previous studies. Similar age and temperature-dependent expression of Cer1 retrotransposons was observed for several other wild strains, indicating that these properties are common, if not integral, features of this retroelement. Retrotransposons, in contrast to DNA transposons, have a cytoplasmic stage in replication, and those that infect non-dividing cells must pass their genomic material through nuclear pores. In most C. elegans germ cells, nuclear pores are largely covered by germline-specific organelles called P granules. Our results suggest that Cer1 capsids target meiotic germ cells exiting pachytene, when free nuclear pores are added to the nuclear envelope and existing P granules begin to be removed. In pachytene germ cells, Cer1 capsids concentrate away from nuclei on a subset of microtubules that are exceptionally resistant to microtubule inhibitors; the capsids can aggregate these stable microtubules in older adults, which exhibit a temperature-dependent decrease in egg viability. When germ cells exit pachytene, the stable microtubules disappear and capsids redistribute close to nuclei that have P granule-free nuclear pores. This redistribution is microtubule dependent, suggesting that capsids that are released from stable microtubules transfer onto new, dynamic microtubules to track toward nuclei. These studies introduce C. elegans as a model to study the interplay between retroelements and germ cell biology
    corecore