12 research outputs found

    Both habitat change and local lek structure influence patterns of spatial loss and recovery in a black grouse population

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10144-015-0484-3Land use change is a major driver of declines in wildlife populations. Where human economic or recreational interests and wildlife share landscapes this problem is exacerbated. Changes in UK black grouse Tetrao tetrix populations are thought to have been strongly influenced by upland land use change. In a long-studied population within Perthshire, lek persistence is positively correlated with lek size, and remaining leks clustered most strongly within the landscape when the population is lowest, suggesting that there may be a demographic and/or spatial context to the reaction of the population to habitat changes. Hierarchical cluster analysis of lek locations revealed that patterns of lek occupancy when the population was declining were different to those during the later recovery period. Response curves from lek-habitat models developed using MaxEnt for periods with a declining population, low population, and recovering population were consistent across years for most habitat measures. We found evidence linking lek persistence with habitat quality changes and more leks which appeared between 1994 and 2008 were in improving habitat than those which disappeared during the same period. Generalised additive models (GAMs) identified changes in woodland and starting lek size as being important indicators of lek survival between declining and low/recovery periods. There may also have been a role for local densities in explaining recovery since the population low point. Persistence of black grouse leks was influenced by habitat, but changes in this alone did not fully account for black grouse declines. Even when surrounded by good quality habitat, leks can be susceptible to extirpation due to isolation

    Scenario-led habitat modelling of land use change impacts on key species

    Get PDF
    © 2015 Gearyet al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Accurate predictions of the impacts of future land use change on species of conservation concern can help to inform policy-makers and improve conservation measures. If predictions are spatially explicit, predicted consequences of likely land use changes could be accessible to land managers at a scale relevant to their working landscape. We introduce a method, based on open source software, which integrates habitat suitability modelling with scenario-building, and illustrate its use by investigating the effects of alternative land use change scenarios on landscape suitability for black grouse Tetrao tetrix. Expert opinion was used to construct five near-future (twenty years) scenarios for the 800 km 2 study site in upland Scotland. For each scenario, the cover of different land use types was altered by 5-30% from 20 random starting locations and changes in habitat suitability assessed by projecting a MaxEnt suitability model onto each simulated landscape. A scenario converting grazed land to moorland and open forestry was the most beneficial for black grouse, and 'increased grazing' (the opposite conversion) the most detrimental. Positioning of new landscape blocks was shown to be important in some situations. Increasing the area of opencanopy forestry caused a proportional decrease in suitability, but suitability gains for the 'reduced grazing' scenario were nonlinear. 'Scenario-led' landscape simulation models can be applied in assessments of the impacts of land use change both on individual species and also on diversity and community measures, or ecosystem services. A next step would be to include landscape configuration more explicitly in the simulation models, both to make them more realistic, and to examine the effects of habitat placement more thoroughly. In this example, the recommended policy would be incentives on grazing reduction to benefit black grouse

    Taxonomic and Geographic Bias in Conservation Biology Research: A Systematic Review of Wildfowl Demography Studies.

    Get PDF
    Demographic data are important to wildlife managers to gauge population health, to allow populations to be utilised sustainably, and to inform conservation efforts. We analysed published demographic data on the world's wildfowl to examine taxonomic and geographic biases in study, and to identify gaps in knowledge. Wildfowl (order: Anseriformes) are a comparatively well studied bird group which includes 169 species of duck, goose and swan. In all, 1,586 wildfowl research papers published between 1911 and 2010 were found using Web of Knowledge (WoK) and Google Scholar. Over half of the research output involved just 15 species from seven genera. Research output was strongly biased towards 'high income' countries, common wildfowl species, and measures of productivity, rather than survival and movement patterns. There were significantly fewer demographic data for the world's 31 threatened wildfowl species than for non-threatened species. Since 1994, the volume of demographic work on threatened species has increased more than for non-threatened species, but still makes up only 2.7% of total research output. As an aid to research prioritisation, a metric was created to reflect demographic knowledge gaps for each species related to research output for the species, its threat status, and availability of potentially useful surrogate data from congeneric species. According to the metric, the 25 highest priority species include thirteen threatened taxa and nine species each from Asia and South America, and six from Africa

    Differential seed dispersal systems of endemic junipers in two oceanic Macaronesian archipelagos: the influence of biogeographic and biological characteristics

    No full text
    Copyright © Springer Science+Business Media B.V. 2010.This article evaluates the seed dispersal systems of two congeneric and endemic fleshy-fruited plants in the context of two relatively close oceanic archipelagos. For this purpose, representative populations of the endangered junipers Juniperus cedrus in the Canary Islands and Madeira, and Juniperus brevifolia in the Azores were studied. Despite both species sharing the same biogeographic region, we set out to test whether different conditions of the islands and biological characteristics of each juniper species determine the distinctive guilds of seed dispersers involved. We assessed the quantitative and qualitative role of the potential frugivores, showing that the wintering Turdus torquatus and the native Turdus merula were the main seed dispersers for J. cedrus and J. brevifolia, respectively (Frequency of occurrence: 74.9%, 80.2%; germination increase with respect to controls: 11.6%, 15.5%; for J. cedrus and J. brevifolia, respectively). The endemic lizard Gallotia galloti was quantitatively outstanding as seed disperser of J. cedrus, although its qualitative effect does not appear to be beneficial. The introduced rabbit Oryctolagus cuniculus acts as a disruptor in both natural seed dispersal systems, as inferred from the high percentage of damaged seeds found in their droppings. Our results indicate that J. cedrus and J. brevifolia are primarily adapted to ornithochory processes, T. torquatus and T. merula being their respective legitimate long-distance dispersers. Although these birds should be playing a key role in the connectivity of fragmented populations, the dependence of J. cedrus on a migrant bird involves a notable fragility of the system
    corecore