144 research outputs found

    Controls on Cyclic Formation of Quaternary Early Diagenetic Dolomite

    Get PDF
    The origin of sedimentary dolomite and the factors that control its formation within the geological record remain speculative. In most models, dolomite formation is linked to evaporative conditions, high water temperature, increasing Mg/Ca ratio, increasing alkalinity, and high amounts of biomass. Here we challenge these archetypal views, by documenting a case example of Quaternary dolomite which formed in Lake Van at constantly low temperature (<4Ā°C) and without direct control of the latter conditions. Dolomite occurs within highstand sediments related to suborbital climate variability (Dansgaardā€Oeschger cycles). We propose that dolomite precipitation is a product of a microbially influenced process, triggered by ecological stress, resulting from reventilation of the waterā€sediment interface. Independently from the validity of this hypothesis, our results call for a reevaluation of the paleoenvironmental conditions often invoked for early diagenetic dolomiteā€rich intervals within sedimentary sequences and for caution when interpreting time series of subrecent lacustrine carbonates

    Marine bivalve geochemistry and shell ultrastructure from modern low pH environments

    Get PDF
    Abstract. Bivalve shells can provide excellent archives of past environmental change but have not been used to interpret ocean acidification events. We investigated carbon, oxygen and trace element records from different shell layers in the mussels Mytilus galloprovincialis (from the Mediterranean) and M. edulis (from the Wadden Sea) combined with detailed investigations of the shell ultrastructure. Mussels from the harbour of Ischia (Mediterranean, Italy) were transplanted and grown in water with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the east coast of the island of Ischia. The shells of transplanted mussels were compared with M. edulis collected at pH ~8.2 from Sylt (German Wadden Sea). Most prominently, the shells recorded the shock of transplantation, both in their shell ultrastructure, textural and geochemical record. Shell calcite, precipitated subsequently under acidified seawater responded to the pH gradient by an in part disturbed ultrastructure. Geochemical data from all test sites show a strong metabolic effect that exceeds the influence of the low-pH environment. These field experiments showed that care is needed when interpreting potential ocean acidification signals because various parameters affect shell chemistry and ultrastructure. Besides metabolic processes, seawater pH, factors such as salinity, water temperature, food availability and population density all affect the biogenic carbonate shell archive.</jats:p

    Late Palaeozoic to Neogene Geodynamic Evolution of the north-eastern Oman Margin.

    Get PDF
    When the highlands of Arabia were still covered with an ice shield in the latest Carboniferous/Early Permian period, separation of Gondwana started. This led to the creation of the Batain basin (part of the early Indian Ocean), off the northeastern margin of Oman. The rifting reactivated an Infra-Cambrian rift shoulder along the northeastern Oman margin and detritus from this high was shed into the interior Oman basin. Whereas carbonate platform deposits became widespread along the margin of the Neo-Tethys (northern rim of Oman), drifting and oceanization of the Batain basin started only in Late Jurassic/Early Cretaceous time. Extensional tectonics was followed in the Late Cretaceous by contraction caused by the northward drift of Greater India and Afro-Arabia. This resulted in the collision of Afro-Arabia with an intra-oceanic trench and obduction of the Semail ophiolite and the Hawasina nappes south to southwestward onto the northern Oman margin ~80 m.y. ago. During the middle Cretaceous, the oceanic lithosphere (including the future eastern ophiolites of Oman) drifted northwards as part of the Indian plate. At the Cretaceous-Palaeogene transition (~65 Ma), oblique convergence between Greater India and Afro-Arabia caused fragments of the early Indian Ocean to be thrust onto the Batain basin. Subsequently, the Lower Permian to uppermost Maastrichtian sediments and volcanic rocks of the Batain basin, along with fragments of Indian Ocean floor (eastern ophiolites), were obducted northwestward onto the northeastern margin of Oman. Palaeogene neo-autochtonous sedimentary rocks subsequently covered the nappe pile. Tertiary extensional tectonics related to Red Sea rifting in the Late Eocene was followed by Miocene shortening, associated with the collision of Arabia and Eurasia and the formation of the Oman Mountains

    Diagenesis of the palaeo-oil-water transition zone in a Lower Pennsylvanian carbonate reservoir: Constraints from cathodoluminescence microscopy, microthermometry, and isotope geochemistry

    Get PDF
    Ā© 2016. Oil-water transition zones in carbonate reservoirs represent important but rarely studied diagenetic environments that are now increasingly re-evaluated because of their potentially large effects on reservoir economics. Here, data from cathodoluminescence and fluorescence microscopy, isotope geochemistry, microthermometry, and X-ray tomography are combined to decipher the diagenetic history of a 5-m-long core interval comprising the oil-water transition zone in a Lower Pennsylvanian carbonate reservoir. The aim is to document the cementation dynamics prior, during, and after oil emplacement in its context of changing fluid parameters. Intergrain porosity mean values of 7% are present in the upper two sub-zones of the oil-water transitions zone but values sharply increase to a mean of 14% in the lower sub-zone grading into the water-saturated portions of the reservoir and a very similar pattern is observed for permeability values. In the top of the water-filled zone, cavernous porosity with mean values of about 24% is found. Carbonate cements formed from the earliest marine to the late burial stage. Five calcite (Ca-1 through 5) and one dolomite (Dol) phase are recognized with phase Ca-4b recording the onset of hydrocarbon migration. Carbon and oxygen cross-plots clearly delineate different paragenetic phases with Ca-4 representing the most depleted Ī“13C ratios with mean values of about -21ā€°. During the main phase of oil emplacement, arguably triggered by far-field Alpine tectonics, carbonate cementation was slowed down and eventually ceased in the presence of hydrocarbons and corrosive fluids with temperatures of 110-140 Ā°C and a micro-hiatal surface formed in the paragenetic sequence. These observations support the "oil-inhibits-diagenesis" model. The presence an earlier corrosion surface between phase Ca-3 and 4 is best assigned to initial pulses of ascending corrosive fluids in advance of hydrocarbons. The short-lived nature of the oil migration event found here is rather uncommon when compared to other carbonate reservoirs. The study is relevant as it clearly documents the strengths of a combined petrographic and geochemical study in order to document the timing of oil migration in carbonate reservoirs and its related cementation dynamics

    The magnesium isotope record of cave carbonate archives

    Get PDF
    Here we explore the potential of magnesium (&amp;delta;&lt;sup&gt;26&lt;/sup&gt;Mg) isotope time-series data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco), the warm-temperate (Germany), the equatorial-humid (Peru) and the cold-humid (Austria) climate zones. Changes in the calcite magnesium isotope signature with time are compared against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and disequilibrium processes governs the &amp;delta;&lt;sup&gt;26&lt;/sup&gt;Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rainwater or snow as well as soil and host rock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean &amp;delta;&lt;sup&gt;26&lt;/sup&gt;Mg values (GDA: &amp;minus;4.26 Ā± 0.07&amp;permil; and HK3: &amp;minus;4.17 Ā± 0.15&amp;permil;), and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value of all stalagmites (NC-A and NC-B &amp;delta;&lt;sup&gt;26&lt;/sup&gt;Mg: &amp;minus;3.96 Ā± 0.04&amp;permil;) but only minor variations in Mg-isotope composition, which is consistent with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean &amp;delta;&lt;sup&gt;26&lt;/sup&gt;Mg: &amp;minus;4.01 Ā± 0.07&amp;permil;; BU 4 mean &amp;delta;&lt;sup&gt;26&lt;/sup&gt;Mg: &amp;minus;4.20 Ā± 0.10&amp;permil;) suggest changes in outside air temperature was the principal driver rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: &amp;minus;3.00 Ā± 0.73&amp;permil;; SPA 59: &amp;minus;3.70 Ā± 0.43&amp;permil;) are affected by glacial versus interglacial climate change with outside air temperature affecting soil zone activity and weathering balance. Several &amp;delta;&lt;sup&gt;26&lt;/sup&gt;Mg values of the Austrian and two &amp;delta;&lt;sup&gt;26&lt;/sup&gt;Mg values of the German speleothems are shifted to higher values due to sampling in detrital layers (Mg-bearing clay minerals) of the speleothems. The data and their interpretation shown here highlight the potential but also the limitations of the magnesium isotope proxy applied in continental climate research. An obvious potential lies in its sensitivity for even subtle changes in soil-zone parameters, a hitherto rather poorly understood but extremely important component in cave archive research. Limitations are most obvious in the low resolution and high sample amount needed for analysis. Future research should focus on experimental and conceptual aspects including quantitative and well-calibrated leaching and precipitation experiments

    Ostracods as ecological and isotopic indicators of lake water salinity changes: the Lake Van example

    Get PDF
    Ostracods are common lacustrine calcitic microfossils. Their faunal assemblage and morphological characteristics are important ecological proxies, and their valves are archives of geochemical information related to palaeoclimatic and palaeohydrological changes. In an attempt to assess ostracod ecology (taxonomic diversity and valve morphology) combined with valve geochemistry (Ī“18O and Ī“13C) as palaeosalinity indicators, we analysed sedimentary material from the International Continental Scientific Drilling Program (ICDP) Ahlat Ridge site from a terminal and alkaline lake, Lake Van (Turkey), covering the last 150&thinsp;kyr. Despite a low species diversity, the ostracod faunal assemblage reacted sensitively to changes in the concentration of total dissolved salts in their aquatic environment. Limnocythere inopinata is present throughout the studied interval, while Limnocythere sp. A is restricted to the Last Glacial period and related to increased lake water salinity and alkalinity. The presence of species belonging to the genus Candona is limited to periods of lower salinity. Valves of Limnocytherinae species (incl. L. inopinata) display nodes (hollow protrusions) during intervals of increased salinity. Both the number of noded valves and the number of nodes per valve appear to increase with rising salinity, suggesting that node formation is related to hydrological changes (salinity and/or alkalinity). In contrast to Lake Van's bulk Ī“18O record, the Ī“18O values of ostracod valves do record relative changes of the lake volume, with lower values during high lake level periods. The Ī“13C values of different species reflect ostracod habitat preferences (i.e. infaunal vs. epifaunal) but are less sensitive to hydrological changes. However, combined with other proxies, decreasing Holocene Ī“13C values may indicate a freshening of the lake water compared to the low lake level during the Last Glacial period. The Lake Van example underscores the significance and value of coupling ostracod ecology and valve geochemistry in palaeoenvironmental studies of endorheic lake basins.</p

    Marine bivalve shell geochemistry and ultrastructure from modern low pH environments: environmental effect versus experimental bias

    Get PDF
    Bivalve shells can provide excellent archives of past environmentalchange but have not been used to interpret ocean acidification events.We investigated carbon, oxygen and trace element records from differentshell layers in the mussels Mytilus galloprovincialis combined withdetailed investigations of the shell ultrastructure. Mussels from theharbour of Ischia (Mediterranean, Italy) were transplanted and grown inwater with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the eastcoast of the island. Most prominently, the shells recorded the shock oftransplantation, both in their shell ultrastructure, textural andgeochemical record. Shell calcite, precipitated subsequently underacidified seawater responded to the pH gradient by an in part disturbedultrastructure. Geochemical data from all test sites show a strongmetabolic effect that exceeds the influence of the low-pH environment.These field experiments showed that care is needed when interpretingpotential ocean acidification signals because various parameters affectshell chemistry and ultrastructure. Besides metabolic processes,seawater pH, factors such as salinity, water temperature, foodavailability and population density all affect the biogenic carbonateshell archive
    • ā€¦
    corecore