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Controls on Cyclic Formation of Quaternary Early
Diagenetic Dolomite
J. McCormack1 , T. R. R. Bontognali2,3 , A. Immenhauser1, and O. Kwiecien1

1Sediment and Isotope Geology, Ruhr University Bochum, Bochum, Germany, 2Department of Earth Sciences, ETH Zurich,
Zurich, Switzerland, 3Space Exploration Institute, Neuchâtel, Switzerland

Abstract The origin of sedimentary dolomite and the factors that control its formation within the
geological record remain speculative. In most models, dolomite formation is linked to evaporative
conditions, high water temperature, increasing Mg/Ca ratio, increasing alkalinity, and high amounts of
biomass. Here we challenge these archetypal views, by documenting a case example of Quaternary dolomite
which formed in Lake Van at constantly low temperature (<4°C) and without direct control of the latter
conditions. Dolomite occurs within highstand sediments related to suborbital climate variability
(Dansgaard-Oeschger cycles). We propose that dolomite precipitation is a product of a microbially influenced
process, triggered by ecological stress, resulting from reventilation of the water-sediment interface.
Independently from the validity of this hypothesis, our results call for a reevaluation of the
paleoenvironmental conditions often invoked for early diagenetic dolomite-rich intervals within sedimentary
sequences and for caution when interpreting time series of subrecent lacustrine carbonates.

Plain Language Summary The mineral dolomite is a common constituent of many ancient rock
formations, including important hydrocarbon reservoirs and sedimentary sequences that are studied for
paleoclimatic reconstructions. Because dolomite is very difficult to precipitate in laboratory experiments that
simulate Earth’s surface conditions, the key factors controlling its occurrence in the geological record remain
speculative and debated. Through the study of subrecent sediments recovered from a deep alkaline lake,
we show that warm and evaporitic conditions, as well as other factors commonly considered crucial for
dolomite formation, are not as essential as traditionally thought. Consequently, the interpretation of several
dolomite-rich sedimentary sequences may require a substantial re-evaluation.

1. Introduction

Modern dolomite-forming environments are mainly represented by sabkhas, playa lakes, and hypersaline
lagoons. Studies of these evaporitic settings have led to the formulation of several models commonly used
for interpreting ancient sedimentary sequences rich in dolomite (Petrash et al., 2017), including rocks that
are relevant for understanding the evolution of early life (Allwood et al., 2009) and others that constitute
economically important oil and gas reservoirs (Alsharhan & Kendall, 2003). In most models, high fluid
temperatures, high Mg/Ca ratios, and high alkalinity are considered key factors for dolomite formation
(Machel, 2004; Warren, 2000). Accordingly, the presence of dolomite within the late glacial sediments of alka-
line Lake Van (Turkey) has been unanimously associated with periods of enhanced evaporation, a high Mg/Ca
ratio, and either low lake levels or complete desiccation (Degens et al., 1984; Landmann et al., 1996; Lemcke &
Sturm, 1997). Also in a more recent work (Çağatay et al., 2014), the sporadic occurrence of dolomite in last gla-
cial sediments and the interval related to the Younger Dryas cooling has been associated with arid conditions.

We systematically analyzed the sedimentary record of Lake Van covering the last 150 ka before present (BP)
documenting recurring (cyclic) high concentrations of dolomite. The nature of our material does not allow for
assessing the possible, and recently hotly debated, role of very high Mg calcite precursor phases in early
diagenetic (nonstoichiometric) dolomite formation (Gregg et al., 2015; Petrash et al., 2017). Instead, it
provides a unique opportunity for testing the envelope of environmental conditions assumed essential for
dolomite formation. If juxtaposed with environmental proxies reflecting regional and local hydrological
conditions (Kwiecien et al., 2014; Litt et al., 2014; North et al., 2017; Pickarski, Kwiecien, Djamali, et al., 2015;
Pickarski, Kwiecien, Langgut, et al., 2015; Pickarski & Litt, 2017; Randlett et al., 2017; Stockhecke, Sturm,
et al., 2014; Tomonaga et al., 2017) (Figure 1), the dolomite occurrence is incompatible with the commonly
accepted hypothesis of evaporitic conditions driving its formation. Our high-resolution dolomite
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concentration data (Figure 1), presented on the common Lake Van age model (Stockhecke, Kwiecien, et al.,
2014), suggest that most of the dolomite-rich intervals coincide with sediments deposited during a high
lake level and generally wetter conditions. These wetter phases are also documented in other climate
archives across the Eastern Mediterranean region (e.g., Rowe et al., 2012; Stevens et al., 2012). Such
conditions are usually not expected to favor dolomite formation; hence, we reconsider Lake Van as an
exceptional site for evaluating the factors that control the formation of dolomite and its uneven
distribution throughout the geological record.

2. Methods

This study was carried out on material recovered in 2010 as part of the International Continental Scientific
Drilling Program PALEOVAN. We resampled the Ahlat Ridge composite profile and off-section. Visual correla-
tion based on high-resolution images allowed assigning composite profile depth (and age; Stockhecke,
Kwiecien, et al., 2014) to off-section samples. The data presented here comprise 216 samples (single sample
resolution of 2 cm) from the uppermost 67 m (55 m without event deposits, mcblf-nE) of the composite pro-
file corresponding to 146.6 ka BP. Samples were wet-sieved with distilled water through a succession of

Figure 1. Lake Van dolomite distribution compared to proxies of relative moisture availability, salinity and lake level. (a) Isotopic composition of NGRIP ice core
(NGRIP, 2004; Steffensen et al., 2008; Svensson et al., 2008; Wolff et al., 2010) and synthetic isotopic composition of Greenland ice (GLT_syn) (Barker et al., 2011)
are depicted as reference curves with the Younger Dryas (YD) marked and numbered Greenland Interstadials. Sedimentary proxies from Lake Van include (b) XRF-Ca/K ratio
(Kwiecien et al., 2014), (c) arboreal pollen and Quercus pollen percentage (Litt et al., 2014; Pickarski, Kwiecien, Djamali, et al., 2015; Pickarski, Kwiecien, Langgut, et al., 2015;
Pickarski & Litt, 2017), (d) pore water salinity plotted against depth in meter composite below lake floor (mcblf; Tomonaga et al., 2017), (e) biomarker Archaeol and
Caldarchaeol Ecometric (ACE) index (Randlett et al., 2017), and (g) lithologies with genetic interpretations related to lake-level variability as colored bar (Stockhecke, Sturm, et
al., 2014) and major lake-level variations (Stockhecke, Sturm, et al., 2014; Tomonaga et al., 2017) in meter above/below present lake level (mapll/mbpll). (f) Dolomite
concentration is given in % of relative carbonate concentration. The grey shaded areas represent interglacials.
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sieves with a minimum mesh size of 63 μm. The <63 μm fraction was decanted through filter paper and air-
dried at room temperature. For X-ray powder diffraction (XRD) and stable isotope analysis an aliquot of each
dried sample was homogenized with an agate mortar. Material from the not homogenized aliquots as well as
oven dried (50°C) bulk material was used for scanning electron microscopy (SEM). SEM analysis was per-
formed on gold-coated samples using a LEO/Zeiss Gemini 1530 operating with an acceleration voltage of
20 kV. Identification of chemical mineral composition was archived by the use of the energy-dispersive
X-ray spectroscopy system and the AZTec software package from OXFORD Instruments.

XRD analysis was performed on a PANalytical Empyrean equipped with a PIXcel1D detector using Cu Kα radia-
tion, applying a tube voltage and current of 45 kV and 40 mA, respectively. Operating conditions included a
step size of 0.0131° and a counting time of 3 s per step for 2θ from 4 to 65°, fixed 0.25° divergent, and 0.5°
antiscatter slits in the incident beam path, incident and diffracted beam 0.04 rad soller slits, and a 7.5-mm
high antiscatter slit together with a Ni filter in the diffracted beam optics. Mineral identification and semi-
quantitative estimation of dolomite relative to other carbonate phases (aragonite, calcite) and bulk sediment
were performed with the PANalytical X’Pert HighScore Plus software and based on mineral Relative Intensity
Ratios. Concentration of dolomite relative to bulk sediment was further visually controlled by SEM imaging of
selected samples. A fully quantitative mineralogical analysis is compromised here by the complexity of the
mineral assemblage (e.g., high number of mineral phases, inhomogenic nature of clay, and feldspar minerals).
The degree of dolomite cation ordering was determined from the intensity ratios of the ordering peak 015 to
the 110 peak (I [015]/I [110]) (Goldsmith & Graf, 1958; Hardy & Tucker, 1988) for all samples with high enough
dolomite intensities and lacking significant interference from other mineral reflections. Dolomite CaCO3

content in mole percentage was semiquantitatively estimated following the equation (Lumsden, 1979):
NCaCO3 = 333.33 d–911.99, where NCaCO3 is the mol % CaCO3 in the dolomite lattice and d is the d spacing
in Å of the 104 peak. The position of dolomite 104 reflections was obtained using quartz as an
internal standard.

In order to isolate dolomite from aragonite and calcite for stable isotope analysis ground sample material was
exposed to 0.27 M disodium ethylenediaminetetraacetic acid (pH 6.3) for 20 min (Geske et al., 2015). The
material was subsequently rinsed with distilled water and collected with filter paper where it was left to
air-dry at room temperature. Dissolution of aragonite and calcite was confirmed by XRD analysis (Figure S1).
After this treatment dolomite was the main carbonate mineral with more than 95% of the relative carbonate
composition. Though trace amounts of low-magnesium calcite may have still been present, they would have
negligible influence on sample isotopic composition.

Carbon and oxygen isotope analyses were performed in continuous flow mode following standard proce-
dures (Breitenbach & Bernasconi, 2011) using a GasBench II coupled to a ThermoFinnigan MAT 253 mass
spectrometer at the Ruhr-University Bochum. Depending on dolomite content, 200 to 1,600 μg of sample
powder was weighted into borosilicate glass vials and oven-dried at 104°C overnight. Samples were run at
70°C for 2 hr, together with international standards NBS19, IAEA603, CO8, and ETH-1 (ISO-A; Meckler et al.,
2014). All results are normalized against an in-house prepared dolomite standard (Fra-DOL, grain size
<100 μm, δ13C = 2.74 ± 0.05‰, δ18O =�2.87 ± 0.1‰ Vienna Peedee belemnite), which has been normalized
to the dolomite standard (Müller et al., 2004; Spötl & Vennemann, 2003) prepared by Thorsten Vennemann.
Results are reported with respect to the Vienna Peedee belemnite standard.

Lithological description was performed on high-resolution composite profile images following the previously
published lithotypes and their genetic interpretations (Stockhecke, Sturm, et al., 2014).

3. Origin and Occurrence of Dolomite

The Lake Van sedimentary profile retrieved by the International Continental Scientific Drilling Program
PALEOVAN project (Litt et al., 2012) at the Ahlat Ridge records the last ~600 kyr in a sequence of carbonac-
eous clayey silts and volcaniclastics (Stockhecke, Sturm, et al., 2014). This study focuses on the last 150 kyr
of the sequence. The carbonate fraction of clayey silts comprises aragonite and low-magnesium calcite (both
surface water precipitates), and a poorly ordered (degree of ordering 0.29 to 0.55) and Ca-enriched (calcian)
dolomite (53–59mol % CaCO3) displaying all ordering peaks required to qualify it crystallographically as dolo-
mite (Figure S1). Calcian dolomite concentration varies between 0 and 85% of the relative carbonate
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composition (Figure 1) making up to ~60% of the bulk sediment. The concentration of a most likely
stoichiometric and possibly detrital dolomite stays at a background level near XRD detection limit (Figure S2,
supporting information). Based on several lines of evidence, we conclude that the main portion of Lake
Van dolomite is of nondetrital origin. Variation in XRD calcian dolomite peak-intensity is unparalleled by
any detrital (siliciclastic) constituent and high dolomite concentrations typically coincide with high X-ray
fluorescence Ca/K ratios indicating reduced detrital input (Kwiecien et al., 2014; Figure 1). Enhanced input
of siliciclastic material (feldspar and clay minerals) would dilute background carbonate sedimentation and
lead to a lower X-ray fluorescence-Ca/K ratio. SEM reveals multiple, well-formed, pristine, euhedral, to
subhedral crystal faces (Figure 2), with signs of neither transport nor erosion. Crystals in sizes from ~2 to
40 μm (Figure 2a) are often interwoven with clay minerals (Figure 2b) and individual crystals tend to grow
around primary carbonates or merge with different orientations, inferring space-limited precipitation
within the sediment rather than precipitation within the water column (Figures 2c and 2d).
Morphologically, Lake Van dolomites resemble diagenetic dolomites from Lake Bosumtwi (Talbot & Kelts,
1986), Lake Hayward (Rosen & Coshell, 1992), and a coastal aquifer in Israel (Magaritz et al., 1980). While
Lake Van dolomite clearly bears early diagenetic features, at this stage we cannot unambiguously resolve
weather it nucleated spontaneously, was driven by a dissolution-reprecipitation process and/or by solid state
Ca loss and crystal lattice reordering (potentially via a high-Mg or very high-Mg calcite). The dolomite crystals
show no indication of pseudomorphosis after preexisting aragonite or calcite (Figure 2); however, calcium
carbonate crystals associated with dolomite often show rough, notched surfaces (Figure 2c), which may be
the result of reaction-controlled surface dissolution (Burley & Kantorowicz, 1986).

The most striking feature of dolomite occurrence within the last glacial sediments is its association with finely
laminated intervals (Figures 1 and S3). These short-lived intercalations of finely laminated clayey silt are
characterized commonly by high total organic carbon, high carbonate, and higher arboreal pollen content.
Chronology independent, fine lamination in combination with other proxies indicates deposition under
suboxic/anoxic conditions during periods of higher moisture availability and a rising/high lake level
(Kwiecien et al., 2014; Stockhecke, Sturm, et al., 2014; Pickarski, Kwiecien, Langgut, et al., 2015). Plotted on
the common age model (Stockhecke, Sturm, et al., 2014), the occurrence of high concentrations of dolomite
coincides with rapid Northern Hemisphere temperature fluctuations represented as maxima in the NGRIP
δ18O record (NGRIP, 2004); that is, Greenland Interstadials also dubbed Dansgaard-Oeschger cycles

1 µm

10 µm 2 µm

10 µm
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c
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d

Figure 2. Scanning electron microscopy images of Lake Van dolomite crystals. (a) Large (~40 μm) dolomite crystal from 56.814 to 56.834 mcblf. (b) Dolomite crystal
interwoven with clay minerals from 56.814 to 56.834 mcblf. (c) Dolomite growing around a calcium carbonate crystal with notched surface (12.944–12.964 mcblf).
(d) Intergrown dolomite crystals with different crystallographic orientations from 12.944 to 12.964 mcblf.
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(Figure 1). Similarly, dolomite from the late penultimate glacial period is associated with laminated lithologies
(Figures 1 and 3), likely representing Greenland Interstadials (Stockhecke et al., 2016). High dolomite
concentrations occur also occasionally within mottled, banded, and laminated clayey silts deposited
during Marine Isotope Stage 5 (MIS 5). Noteworthy, sediments deposited at a particularly high lake level
~135–125 ka BP (Stockhecke, Sturm, et al., 2014; Tomonaga et al., 2017) contain the highest recorded
dolomite concentration (Figure 1). In comparison, the absence of dolomite-rich intervals in the finely
laminated, suboxic/anoxic, and organic-rich Holocene sediments is perplexing. Although modern Lake Van
water is alkaline and supersaturated with respect to dolomite (SIDolomite = 3.85–4.10) (Reimer et al., 2009),
virtually, no dolomite formation occurs.

The occurrence of dolomite-rich intervals in Lake Van during the Pleistocene appears to bemainly confined to
intervals characterized by abrupt lithological changes, representing a short-lived lake highstand, succeeded
by a lake-level fall. The entire Holocene succession is finely laminated throughout (Figure 1). Consequently,
the absence of dolomite within the youngest record may be tentatively explained by the significant lake-level
rise at the beginning of the Holocene (Çağatay et al., 2014; Landmann et al., 1996; Stockhecke, Sturm, et al.,
2014) and a relatively stable level since (Tomonaga et al., 2017). Based on this observation, we propose that
dolomite precipitation may be favored by abrupt changes in pore water chemistry. More precisely, pore water
perturbations related to a lowering of the lake level following a highstand, whereas the hypolimnion becomes
destratified and/or reventilated, could generate a milieu promoting dolomite formation. Within this scenario
early diagenetic dolomite is formed at or closely beneath the sediment-water interface (SWI), as a result of
mixing of chemically contrasting lake and pore water (e.g., varying salinity and/or oxygenation). Apparently,
minor Holocene lake-level fluctuations (Çağatay et al., 2014) were insufficient in triggering such mixing.

4. Evaluating Factors Controlling Dolomite Formation

Well-constrained, independent, multiproxy records covering the last 150 kyr of Lake Van sediments
provide an excellent framework for evaluating the factors commonly viewed as essential in fostering
dolomite formation.

Figure 3. Comparison of dolomite distribution to total organic carbon, lithological facies (Stockhecke, Sturm, et al., 2014), and dolomite δ18O and δ13C. The shaded
areas highlight lithologies interpreted as suboxic/anoxic. Within the glacial periods, high (c) dolomite concentrations are restricted to (d) lithological facies inter-
preted as suboxic/anoxic with typically high (a) total organic carbon. This correlation is not valid for interglacials. Note that (b) δ13C varies independently of other
proxies (see also Figure S4) and with a higher amplitude than (b) δ18O indicating that dolomite δ13C is likely influenced by microbial metabolism.
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Lake-level reconstructions indicate that a maximum fall did not exceed 200 m (Çağatay et al., 2014;
Tomonaga et al., 2017), meaning that dolomite at the Ahlat Ridge site must have precipitated at >100-m
water depth. Therefore, even if dolomite has formed during falling lake levels, its high δ18O values
(4.4–7.5‰) (Figures 3 and S4) do not imply evaporative conditions. Instead, the heavy δ18O values are an indi-
cation of dolomite precipitation at cold temperatures. We tested this hypothesis by simple calculation using
the modern Lake Van deep and surface water δ18O range (between �0.4 and 1‰ VSMOW; Kempe et al.,
1990; Jasechko et al., 2013), our measured dolomite δ18O range (4.4–7.5‰) and the fractionation factors from
Vasconcelos et al. (2005). The resulting possible range of dolomite formation temperatures falls between �5
and 12°C, respectively (see also Table S1). Despite the uncertainties in past water δ18O and in dolomite-water
fractionation factors (e.g., Murray & Swart, 2017), these values are consistent with modern temperatures
below the thermocline (<4°C) (Reimer et al., 2009).

Increased salinity and Mg/Ca ratios are considered key factors for dolomite precipitation and have been used
to interpret the presence of dolomite in geological records (Çağatay et al., 2014; Dean et al., 2015; Drummond
et al., 1996; Landmann et al., 1996). Although lake-level fluctuations must have affected salinity (and Mg/Ca)
of the Lake Van water, two arguments strongly suggest that these factors did not play a crucial role in trigger-
ing dolomite formation by directly affecting dolomite kinetics: (1) although at different resolution, there is no
correlation between pore water and sedimentary salinity proxies (Randlett et al., 2017; Tomonaga et al., 2017)
and dolomite concentration (Figure 1) (i.e., MIS 2–4 characterized by the highest reconstructed salinity
coincide with lower dolomite concentration than MIS 5); (2) early diagenetic dolomite-rich intervals occur
cyclically in sediments deposited directly prior to a lake-level fall but are virtually absent in sediments repre-
senting a low lake level (Figure 1).

The variation in dolomite δ13C (�0.2 to +7.6‰) is significantly larger than the variation in δ18O (Figure 3). The
δ13C of dissolved inorganic carbon (DIC) from a large DIC pools is, unlike lake water δ18O, relatively insensitive
to lake volume changes (Li & Ku, 1997). This fact has an important implication; an additional carbon source
must have modified the pore water DIC at the time of dolomite formation. A high range of δ13C values for
diagenetic carbonates is not uncommon and may be a result from different microbial metabolisms at work
(Dimitrakopoulos & Muehlenbachs, 1987). Despite intense research, the exact role of microbial mediation
in the mineralization process remains elusive (Bontognali et al., 2010, 2014; Vasconcelos et al., 1995;
Wright, 1999). Early studies placed emphasis on the metabolism of sulfate-reducing bacteria, which
increases alkalinity and pH (favoring carbonate precipitation), and reduce sulfate (initially considered to
inhibit dolomite formation; Petrash et al., 2017; Vasconcelos et al., 1995). Further research showed that
the chemistry of the cell surface and microbial by-products such as extracellular polymeric substances
(EPS) play a crucial role in dolomite nucleation and can overcome the kinetic barriers that typically prevent
the formation of Mg-carbonates at low temperature (Bontognali et al., 2010, 2014; Brauchli et al., 2015;
Roberts et al., 2013).

In Lake Van, dolomite is associated with suboxic/anoxic, commonly organic-rich facies in the glacial periods,
which is consistent with the hypothesis that microbial metabolism (causing the reducing conditions) and
organic matrices (EPS and cells) are essential factors in this mineral formation. Nevertheless, the dolomite
content does not always directly correlate with total organic carbon and suboxic/anoxic facies (Figures 3
and S4). Also, if dolomite in Lake Van does precipitate following reventilation of the bottom/pore water, as
proposed above, the sediments may have experienced at least temporarily oxic conditions during dolomite
nucleation. Furthermore, a microbial metabolism resulting in high alkalinity and pH does not seem to be of
key importance due to the inherently high alkalinity (151–156 mmol/l) and pH (9.7–9.9) of the modern lake
(Reimer et al., 2009), with essentially no dolomite formation. In contrast, both pH and alkalinity may have
even been lower during at least one period of intense dolomite formation. In the entire studied profile only
one short interval (equivalent of 126–128 ka BP) contains diatoms (North et al., 2017). The same sediments
also contain a substantial concentration of dolomite (Figure 1). Diatoms dwelling in the lakes water are well
preserved in the sediment only if the lake pore water is not highly alkaline (Reimer et al., 2009). The presence
of biogenic silica in association with dolomite indicates that the latter formed under chemical conditions with
pH and alkalinity low enough to preserve diatom frustules.

A variation of the mixing zone model (Badiozamani, 1973) predicting the dissolution of calcium carbonate
precursors following hypolimnion reventilation may support high dolomitization rates. Yet such models fail
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to explain how kinetic barriers preventing dolomite formation can be overcome (Murray & Swart, 2017).
However, the association of dolomite-rich intervals with changing lake levels generally agrees with the dolo-
mitization model of Deelman (1999). This model proposes that fluctuations in pH, temperature, or pressure
are capable of breaking Ostwald’s step rule, ultimately favoring the stable phase (dolomite) by leaching
out the metastable phases (e.g., aragonite). Notably, the possibly minor fluctuations in pH (together with
other physico-chemical conditions), following lake-level highstands, are not comparable with the extreme
pH variations (~5.3–8.9) in Deelman’s experiments. In this case we suggest that similar physico-chemical
perturbations of the pore water, which in Deelman’s model break Ostwald’s step rule, may have affected
the microbial community. Carboxyl groups bound to organic matrices and molecules might be particu-
larly effective in catalyzing dolomite formation, via complexing/binding and dewatering Mg ions
(Bontognali et al., 2010, 2014; Roberts et al., 2013). The concentration of carboxyl groups produced by a
microbial population is not directly proportional to the total biomass. A larger number of carboxyl groups
can accumulate when perturbations cause an accelerated cell turnover or death (Roberts et al., 2013) or
when changes in water chemistry or redox conditions stimulate microbes to produce larger quantities of
EPS to protect themselves against the ecologically unfavorable changing conditions (Petrash et al., 2017).
In the case of Lake Van, the changing (falling) lake level accompanied by reventilation and oxygenation
of the SWI has likely led to an ecological stress resulting in, for example, increased EPS production or cell
mortality. Accordingly, by increasing the concentration of carboxyl groups, these perturbations could facil-
itate dolomite formation. Assuming that an enrichment in carboxyl groups within the pore waters was a key
factor for dolomite nucleation, our data allow us to estimate neither how long these facilitating conditions
may have persisted nor whether reestablished anoxic conditions below the SWI or repeated ventilation
cycles had an impact in maintaining them.

5. External Forcing of Cyclic Dolomite Formation

The occurrence of early diagenetic dolomite-rich intervals coinciding with Dansgaard-Oeschger events indi-
cates that dolomite formation in Lake Van is, at least in part, controlled by suborbital climate variability. While
early diagenetic dolomite precipitation as a result of hydrological changes on orbital (glacial/interglacial)
timescales was already suggested for the marine realm (Meister et al., 2008), Lake Van’s sediment record
provides a compelling argument that dolomite formation within an alkaline environment can be highly
sensitive to hydrological changes even on multicentennial timescales. Orbitally and suborbitally forced
lake-level changes appear to be the ultimate external driving factor and the common denominator for the
cyclic occurrence of the dolomite-rich intervals (Figure 1).

6. Implications for Geological Records

Our results demonstrate that in a fluid supersaturated with respect to dolomite, changes in factors commonly
assumed important in this mineral formation (with or without precursor phase) such as high temperature,
increased Mg/Ca ratio, and increased alkalinity may have no impact on its formation rate. Instead, ultimately
climate-controlled lake-level changes and associated ventilation of the lake bottommaymodify the sedimen-
tary microbial community. We hypothesize that environmental/ecological stress leading to changes in micro-
bial EPS production might be a key component in facilitating dolomite formation in alkaline environments
such as Lake Van.

The cyclic occurrence of dolomite in alkaline Lake Van provides a unique analogue potentially helpful for
interpreting Neoproterozoic alkaline oceans and related dolomite formation, which share similar features
beyond deposition in an alkaline carbonate saturated environment (Kempe & Kazmierczak, 2003). These
include dolomite within finely laminated (Le Ber et al., 2013) and fabric preserving sediments (Hood et al.,
2011), its association with deglacial highstand deposits (Hoffman et al., 2007), anoxic conditions (Font
et al., 2006), possible cold-water precipitation (Pokrovsky et al., 2010), and cyclic changes between domi-
nance of dolomite and calcium carbonate (Tojo et al., 2007). The comparison between Lake Van’s dolomite
and ancient dolomite might prove valuable in constraining some of the important issues discussed for cap
dolomite formation, such as warm (Nédélec et al., 2007) versus cold (Pokrovsky et al., 2010) water tempera-
tures, oxidation state (Font et al., 2006) and timescales of dolomite formation, and Neoproterozoic deglacia-
tion (Hoffman et al., 2007).
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Finally, recognition of early diagenetic dolomite in a deep lacustrine setting (below the thermocline at>100-m
water depth) provides an incentive to treat carbonate-based paleoenvironmental reconstructions with caution.
The Lake Van example clearly shows that the occurrence of dolomite in a geological record does not necessa-
rily point toward strongly evaporative conditions and consequently does not imply a paralleled increase in
water temperature, aridity, salinity, Mg/Ca ratios, alkalinity, or pH. Also, our study demonstrates that a signifi-
cant contribution of early diagenetic dolomite (up to 60% of the bulk sediment) does not alter the original fab-
ric and preserves the fine lamination. This fact is of particular importance for unlithified sediments recovered
from modern lakes, where fine lamination and/or presence of varves is generally considered as an evidence
against diagenetic alteration. If unrecognized and unaccounted for, the presence of dolomite will likely bias
carbonate isotopic analyses and lead to discrepant comparisons between different proxies (Kwiecien et al.,
2014; Pickarski, Kwiecien, Djamali, et al., 2015; Pickarski, Kwiecien, Langgut, et al., 2015) and erroneous interpre-
tations. Consequently, realizing the challenges of environmental association and of overlooking dolomite
occurrence is vital for the integrity of carbonate-based paleolimnological and paleoclimatic interpretations.
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