23 research outputs found

    Investigating the trade-off between the effectiveness and efficiency of process modeling

    Get PDF
    Despite recent efforts to improve the quality of process models, we still observe a significant dissimilarity in quality between models. This paper focuses on the syntactic condition of process models, and how it is achieved. To this end, a dataset of 121 modeling sessions was investigated. By going through each of these sessions step by step, a separate ‘revision’ phase was identified for 81 of them. Next, by cutting the modeling process off at the start of the revision phase, a partial process model was exported for these modeling sessions. Finally, each partial model was compared with its corresponding final model, in terms of time, effort, and the number of syntactic errors made or solved, in search for a possible trade-off between the effectiveness and efficiency of process modeling. Based on the findings, we give a provisional explanation for the difference in syntactic quality of process models

    Considerations about quality in model-driven engineering

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11219-016-9350-6The virtue of quality is not itself a subject; it depends on a subject. In the software engineering field, quality means good software products that meet customer expectations, constraints, and requirements. Despite the numerous approaches, methods, descriptive models, and tools, that have been developed, a level of consensus has been reached by software practitioners. However, in the model-driven engineering (MDE) field, which has emerged from software engineering paradigms, quality continues to be a great challenge since the subject is not fully defined. The use of models alone is not enough to manage all of the quality issues at the modeling language level. In this work, we present the current state and some relevant considerations regarding quality in MDE, by identifying current categories in quality conception and by highlighting quality issues in real applications of the model-driven initiatives. We identified 16 categories in the definition of quality in MDE. From this identification, by applying an adaptive sampling approach, we discovered the five most influential authors for the works that propose definitions of quality. These include (in order): the OMG standards (e.g., MDA, UML, MOF, OCL, SysML), the ISO standards for software quality models (e.g., 9126 and 25,000), Krogstie, Lindland, and Moody. We also discovered families of works about quality, i.e., works that belong to the same author or topic. Seventy-three works were found with evidence of the mismatch between the academic/research field of quality evaluation of modeling languages and actual MDE practice in industry. We demonstrate that this field does not currently solve quality issues reported in industrial scenarios. The evidence of the mismatch was grouped in eight categories, four for academic/research evidence and four for industrial reports. These categories were detected based on the scope proposed in each one of the academic/research works and from the questions and issues raised by real practitioners. We then proposed a scenario to illustrate quality issues in a real information system project in which multiple modeling languages were used. For the evaluation of the quality of this MDE scenario, we chose one of the most cited and influential quality frameworks; it was detected from the information obtained in the identification of the categories about quality definition for MDE. We demonstrated that the selected framework falls short in addressing the quality issues. Finally, based on the findings, we derive eight challenges for quality evaluation in MDE projects that current quality initiatives do not address sufficiently.F.G, would like to thank COLCIENCIAS (Colombia) for funding this work through the Colciencias Grant call 512-2010. This work has been supported by the Gene-ralitat Valenciana Project IDEO (PROMETEOII/2014/039), the European Commission FP7 Project CaaS (611351), and ERDF structural funds.Giraldo-Velásquez, FD.; España Cubillo, S.; Pastor López, O.; Giraldo, WJ. (2016). Considerations about quality in model-driven engineering. Software Quality Journal. 1-66. https://doi.org/10.1007/s11219-016-9350-6S166(1985). Iso information processing—documentation symbols and conventions for data, program and system flowcharts, program network charts and system resources charts. ISO 5807:1985(E) (pp. 1–25).(2011). Iso/iec/ieee systems and software engineering – architecture description. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000) (pp. 1–46).Abran, A., Moore, J.W., Bourque, P., Dupuis, R., & Tripp, L.L. (2013). Guide to the Software Engineering Body of Knowledge (SWEBOK) version 3 public review. IEEE. ISO Technical Report ISO/IEC TR 19759.Agner, L.T.W., Soares, I.W., Stadzisz, P.C., & Simão, J.M. (2013). A brazilian survey on {UML} and model-driven practices for embedded software development. Journal of Systems and Software, 86(4), 997–1005. {SI} : Software Engineering in Brazil: Retrospective and Prospective Views.Amstel, M.F.V. (2010). The right tool for the right job: assessing model transformation quality. pages 69–74. Affiliation: Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, Netherlands. Cited By (since 1996):1.Aranda, J., Damian, D., & Borici, A. (2012). Transition to model-driven engineering: what is revolutionary, what remains the same?. In Proceedings of the 15th international conference on model driven engineering languages and systems, MODELS’12 (pp. 692–708). Berlin, Heidelberg: Springer.Arendt, T., & Taentzer, G. (2013). A tool environment for quality assurance based on the eclipse modeling framework. Automated Software Engineering, 20(2), 141–184.Atkinson, C., Bunse, C., & Wüst, J. (2003). Driving component-based software development through quality modelling, volume 2693. Cited By (since 1996):3.Baker, P., Loh, S., & Weil, F. (2005). Model-driven engineering in a large industrial context—motorola case study. In Briand, L., & Williams, C. (Eds.) Model Driven Engineering Languages and Systems, volume 3713 of Lecture Notes in Computer Science (pp. 476–491). Berlin, Heidelberg: Springer.Barišić, A., Amaral, V., Goulão, M., & Barroca, B. (2011). Quality in use of domain-specific languages: a case study. In Proceedings of the 3rd ACM SIGPLAN workshop on evaluation and usability of programming languages and tools, PLATEAU ’11 (pp. 65–72). New York: ACM.Becker, J., Bergener, P., Breuker, D., & Rackers, M. (2010). Evaluating the expressiveness of domain specific modeling languages using the bunge-wand-weber ontology. In 2010 43rd Hawaii international conference on system sciences (HICSS) (pp. 1–10).Bertrand Portier, L.A. (2009). Model driven development misperceptions and challenges.Bézivin, J., & Kurtev, I. (2005). Model-based technology integration with the technical space concept. In Proceedings of the Metainformatics Symposium: Springer.Brambilla, M. (2016). How mature is of model-driven engineering as an engineering discipline @ONLINE.Brambilla, M., & Fraternali, P. (2014). Large-scale model-driven engineering of web user interaction: The webml and webratio experience. Science of Computer Programming, 89 Part B(0), 71 – 87. Special issue on Success Stories in Model Driven Engineering.Brown, A. (2009). Simple and practical model driven architecture (mda) @ONLINE.Bruel, J.-M., Combemale, B., Ober, I., & Raynal, H. (2015). Mde in practice for computational science. Procedia Computer Science, 51, 660–669.Budgen, D., Burn, A.J., Brereton, O.P., Kitchenham, B.A., & Pretorius, R. (2011). Empirical evidence about the uml: a systematic literature review. Software: Practice and Experience, 41(4), 363–392.Burden, H., Heldal, R., & Whittle, J. (2014). Comparing and contrasting model-driven engineering at three large companies. In Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM ’14 (pp. 14:1–14:10). New York: ACM.Cabot, J. Has mda been abandoned (by the omg)?Cabot, J. (2009). Modeling will be commonplace in three years time @ONLINE.Cachero, C., Poels, G., Calero, C., & Marhuenda, Y. (2007). Towards a Quality-Aware Engineering Process for the Development of Web Applications. Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/462, Ghent University, Faculty of Economics and Business Administration.Challenger, M., Kardas, G., & Tekinerdogan, B. (2015). A systematic approach to evaluating domain-specific modeling language environments for multi-agent systems. Software Quality Journal, 1–41.Chaudron, M.V., Heijstek, W., & Nugroho, A. (2012). How effective is uml modeling? Software & Systems Modeling, 11(4), 571–580. J2: Softw Syst Model.Chenouard, R., Granvilliers, L., & Soto, R. (2008). Model-driven constraint programming. pages 236–246. Affiliation: CNRS, LINA, Universit de Nantes, France; Affiliation: Pontificia Universidad Catlica de, Valparaiso, Chile. Cited By (since 1996):8.Clark, T., & Muller, P.-A. (2012). Exploiting model driven technology: a tale of two startups. Software and Systems Modeling, 11(4), 481–493.Corneliussen, L. (2008). What do you think of model-driven software development?Costal, D., Gómez, C., & Guizzardi, G. (2011). Formal semantics and ontological analysis for understanding subsetting, specialization and redefinition of associations in uml. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6998 LNCS:189–203. cited By (since 1996)3.Cruz-Lemus, J.A., Maes, A., Género, M., Poels, G., & Piattini, M. (2010). The impact of structural complexity on the understandability of uml statechart diagrams. Information Sciences, 180(11), 2209–2220. Cited By (since 1996):14.Cuadrado, J.S., Izquierdo, J.L.C., & Molina, J.G. (2014). Applying model-driven engineering in small software enterprises. Science of Computer Programming, 89 Part B(0), 176 – 198. Special issue on Success Stories in Model Driven Engineering.Da Silva, A.R. (2015). Model-driven engineering: a survey supported by the unified conceptual model. Computer Languages Systems and Structures, 43, 139–155.Da Silva Teixeira, D.G.M., Quirino, G.K., Gailly, F., De Almeida Falbo, R., Guizzardi, G., & Perini Barcellos, M. (2016). PoN-S: a Systematic Approach for Applying the Physics of Notation (PoN), (pp. 432–447). Cham: Springer International Publishing.Davies, I., Green, P., Rosemann, M., Indulska, M., & Gallo, S. (2006). How do practitioners use conceptual modeling in practice? Data and Knowledge Engineering, 58(3), 358 – 380. Including the special issue : {ER} 2004ER 2004.Davies, J., Milward, D., Wang, C.-W., & Welch, J. (2015). Formal model-driven engineering of critical information systems. Science of Computer Programming, 103(0), 88 – 113. Selected papers from the First International Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2012).De Oca, I.M.-M., Snoeck, M., Reijers, H.A., & Rodríguez-Morffi, A. (2015). A systematic literature review of studies on business process modeling quality. Information and Software Technology, 58, 187–205.DenHaan, J. (2009). 8 reasons why model driven development is dangerous @ONLINE.DenHaan, J. (2010). Model driven engineering vs the commando pattern @ONLINE.DenHaan, J. (2011a). Why aren’t we all doing model driven development yet @ONLINE.DenHaan, J. (2011b). Why there is no future model driven development @ONLINE.Di Ruscio, D., Iovino, L., & Pierantonio, A. (2013). Managing the coupled evolution of metamodels and textual concrete syntax specifications. cited By (since 1996)0.Dijkman, R.M., Dumas, M., & Ouyang, C. (2008). Semantics and analysis of business process models in {BPMN}. Information and Software Technology, 50(12), 1281–1294.Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., Ramos, I., & Fernández, L. (2011). A framework for the quality evaluation of mdwe methodologies and information technology infrastructures. International Journal of Human Capital and Information Technology Professionals, 2(4), 11–22.Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., & Torres, A.H. (2010). A quality model in a quality evaluation framework for mdwe methodologies. pages 495–506. Affiliation: Departamento de Lenguajes y Sistemas Informíticos, University of Seville, Seville, Spain., Cited By (since 1996):1.Dubray, J.-J. (2011). Why did mde miss the boat?.Escalona, M.J., Gutiérrez, J.J., Pérez-Pérez, M., Molina, A., Domínguez-Mayo, E., & Domínguez-Mayo, F.J. (2011). Measuring the Quality of Model-Driven Projects with NDT-Quality, (pp. 307–317). New York: Springer.Espinilla, M., Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., Ross, M., & Staples, G. (2011). A Method Based on AHP to Define the Quality Model of QuEF (Vol. 123, pp. 685–694). Berlin, Heidelberg: Springer.Fabra, J., Castro, V.D., Álvarez, P., & Marcos, E. (2012). Automatic execution of business process models: exploiting the benefits of model-driven engineering approaches. Journal of Systems and Software, 85(3), 607–625. Novel approaches in the design and implementation of systems/software architecture.Falkenberg, E.D., Hesse, W., Lindgreen, P., Nilsson, B.E., Oei, J.L.H., Rolland, C., Stamper, R.K., Assche, F.J.M.V., Verrijn-Stuart, A.A., & Voss, K. (1996). Frisco: a framework of information system concepts. Technical report, The IFIP WG 8. 1 Task Group FRISCO.Fettke, P., Houy, C., Vella, A.-L., & Loos, P. (2012). Towards the Reconstruction and Evaluation of Conceptual Model Quality Discourses – Methodical Framework and Application in the Context of Model Understandability, volume 113 of Lecture Notes in Business Information Processing, chapter 28, pages 406–421, Springer, Berlin, Heidelberg.Finnie, S. (2015). Modeling community: Are we missing something?Fournier, C. (2008). Is uml [email protected], R., & Rumpe, B. (2007). Model-driven development of complex software: a research roadmap. In Future of Software Engineering, 2007, FOSE ’07 (pp. 37–54).Gallego, M., Giraldo, F.D., & Hitpass, B. (2015). Adapting the pbec-otss software selection approach for bpm suites: an application case. In 2015 34th International Conference of the Chilean Computer Science Society (SCCC) (pp. 1–10).Galvão, I., & Goknil, A. (2007). Survey of traceability approaches in model-driven engineering. cited By (since 1996)22.Giraldo, F., España, S., Giraldo, W., & Pastor, O. (2015). Modelling language quality evaluation in model-driven information systems engineering: a roadmap. In 2015 IEEE 9th International Conference on Research Challenges in Information Science (RCIS) (pp. 64–69).Giraldo, F., España, S., & Pastor, O. (2014). Analysing the concept of quality in model-driven engineering literature: a systematic review. In 2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS) (pp. 1–12).Giraldo, F.D., España, S., & Pastor, O. (2016). Evidences of the mismatch between industry and academy on modelling language quality evaluation. arXiv: 1606.02025 .González, C., & Cabot, J. (2014). Formal verification of static software models in mde: a systematic review. Information and Software Technology, 56(8), 821–838. cited By (since 1996)0.González, C.A., Büttner, F., Clarisó, R., & Cabot, J. (2012). Emftocsp: a tool for the lightweight verification of emf models. pages 44–50. Affiliation: cole des Mines de Nantes, INRIA, LINA, Nantes, France; Affiliation: Universitat Oberta de Catalunya, Barcelona, Spain. Cited By (since 1996):1.Gorschek, T., Tempero, E., & Angelis, L. (2014). On the use of software design models in software development practice: an empirical investigation. Journal of Systems and Software, 95(0), 176– 193.Goulão, M., Amaral, V., & Mernik, M. (2016). Quality in model-driven engineering: a tertiary study. Software Quality Journal, 1–33.Grobshtein, Y., & Dori, D. (2011). Generating sysml views from an opm model: design and evaluation. Systems Engineering, 14(3), 327–340.Haan, J.d. (2008). 8 reasons why model-driven approaches (will) fail.Harel, D., & Rumpe, B. (2000). Modeling languages: Syntax, semantics and all that stuff, part i: The basic stuff, Israel. Technical report Jerusalem Israel.Harel, D., & Rumpe, B. (2004). Meaningful modeling: what’s the semantics of semantics? Computer, 37(10), 64–72.Hebig, R., & Bendraou, R. (2014). On the need to study the impact of model driven engineering on software processes. In Proceedings of the 2014 International Conference on Software and System Process, ICSSP 2014 (pp. 164–168). New York: ACM.Heidari, F., & Loucopoulos, P. (2014). Quality evaluation framework (qef): modeling and evaluating quality of business processes. International Journal of Accounting Information Systems, 15(3), 193–223. Business Process Modeling.Heymans, P., Schobbens, P.Y., Trigaux, J.C., Bontemps, Y., Matulevicius, R., & Classen, A. (2008). Evaluating formal properties of feature diagram languages. Software, IET, 2(3), 281–302. ID 2.Hindawi, M., Morel, L., Aubry, R., & Sourrouille, J.-L. (2009). Description and Implementation of a UML Style Guide (Vol. 5421, pp. 291–302). Berlin: Springer.Hoang, D. (2012). Current limitations of mdd and its implications @ONLINE.Hodges, W. (2013). Model theory Zalta, E.N. (Ed.) The Stanford Encyclopedia of Philosophy. Fall 2013 edition.Hutchinson, J., Rouncefield, M., & Whittle, J. (2011a). Model-driven engineering practices in industry. In Proceedings of the 33rd International Conference on Software Engineering, ICSE’11 (pp. 633–642). New York: ACM.Hutchinson, J., Whittle, J., & Rouncefield, M. (2014). Model-driven engineering practices in industry: social, organizational and managerial factors that lead to success or failure. Science of Computer Programming, 89 Part B(0), 144–161. Special issue on Success Stories in Model Driven Engineering.Hutchinson, J., Whittle, J., Rouncefield, M., & Kristoffersen, S. (2011b). Empirical assessment of mde in industry. In Proceedings of the 33rd International Conference on Software Engineering, ICSE’11 (pp. 471–480). New York: ACM.Igarza, I.M.H., Boada, D.H.G., & Valdés, A.P. (2012). Una introducción al desarrollo de software dirigido por modelos. Serie Científica, 5(3).ISO/IEC (2001). ISO/IEC 9126. Software engineering—Product quality. ISO/IEC.Izurieta, C., Rojas, G., & Griffith, I. (2015). Preemptive management of model driven technical debt for improving software quality. In Proceedings of the 11th International ACM SIGSOFT Conference on Quality of Software Architectures, QoSA’15 (pp. 31–36). New York: ACM.Jalali, S., & Wohlin, C. (2012). Systematic literature studies: Database searches vs. backward snowballing. In Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM’12 (pp. 29–38). New York: ACM.Kahraman, G., & Bilgen, S. (2013). A framework for qualitative assessment of domain-specific languages. Software & Systems Modeling, 1–22.Kessentini, M., Langer, P., & Wimmer, M. (2013). Searching models, modeling search: On the synergies of sbse and mde (pp. 51–54).Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. Technical Report EBSE 2007-001, Keele University and Durham University Joint Report.Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., & Rosenberg, J. (2002). Preliminary guidelines for empirical research in software engineering. IEEE Transactions on Software Engineering, 28(8), 721–734.Klinke, M. (2008). Do you use mda/mdd/mdsd, any kind of model-driven approach? Will it be the future?Köhnlein, J. (2013). Eclipse diagram editors from a user’s perspective.Kolovos, D.S., Paige, R.F., & Polack, F.A. (2008). The grand challenge of scalability for model driven engineering. In Models in Software Engineering (pp. 48–53): Springer.Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S., De Lara, J., Ráth, I., Varró, D., Tisi, M., & Cabot, J. (2013). A research roadmap towards achieving scalability in model driven engineering. In Proceedings of the Workshop on Scalability in Model Driven Engineering, BigMDE’13 (pp. 2:1–2:10). New York: ACM.Krill, P. (2016). Uml to be ejected from microsoft visual studio (infoworld).Krogstie, J. (2012a). Model-based development and evolution of information systems: a quality approach, Springer Publishing Company, Incorporated.Krogstie, J. (2012b). Quality of modelling languages, (pp. 249–280). London: Springer.Krogstie, J. (2012c). Quality of models, (pp. 205–247). London: Springer.Krogstie, J. (2012d). Specialisations of SEQUAL, (pp. 281–326). London: Springer.Krogstie, J., Lindland, O.I., & Sindre, G. (1995). Defining quality aspects for conceptual models. In Proceedings of the IFIP International Working Conference on Information System Concepts: Towards a Consolidation of Views (pp. 216–231). London: Chapman & Hall, Ltd.Kruchten, P. (2000). The rational unified process: an introduction, 2nd edn. Boston: Addison-Wesley Longman Publishing Co., Inc.Kruchten, P., Nord, R., & Ozkaya, I. (2012). Technical debt: from metaphor to theory and practice. Software, IEEE, 29(6), 18–21.Kulkarni, V., Reddy, S., & Rajbhoj, A. (2010). Scaling up model driven engineering – experience and lessons learnt. In Petriu, D., Rouquette, N., & Haugen, y. (Eds.) Model Driven Engineering Languages and Systems, volume 6395 of Lecture Notes in Computer Science (pp. 331–345). Berlin, Heidelberg: Springer.Laguna, M.A., & Marqués, J.M. (2010). Uml support for designing software product lines: the package merge mechanism, 16(17), 2313–2332.Lange, C. (2007a). Model size matters. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4364 LNCS:211–216. cited By (since 1996)1.Lange, C., & Chaudron, M. (2005). Managing Model Quality in UML-Based Software Development. In 13th IEEE International Workshop on Technology and Engineering Practice, 2005 (pp. 7–16).Lange, C., Chaudron, M.R.V., Muskens, J., Somers, L.J., & Dortmans, H.M. (2003). An empirical investigation in quantifying inconsistency and incompleteness of uml designs. In Incompleteness of UML Designs, Proceedings Workshop on Consistency Problems in UML-based Software Development, 6th International Conference on Unified Modeling Language, UML, 2003.Lange, C., DuBois, B., Chaudron, M., & Demeyer, S. (2006). An experimental investigation of uml modeling conventions. In Nierstrasz, O., Whittle, J., Harel, D., & Reggio, G. (Eds.) Model Driven Engineering Languages and Systems, volume 4199 of Lecture Notes in Computer Science (pp. 27–41). Berlin, Heidelberg: Springer.Lange, C.F.J., & Chaudron, M.R.V. (2006). Effe

    The rice NLR pair Pikp-1/Pikp-2 initiates cell death through receptor cooperation rather than negative regulation

    Get PDF
    Plant NLR immune receptors are multidomain proteins that can function as specialized sensor/helper pairs. Paired NLR immune receptors are generally thought to function via negative regulation, where one NLR represses the activity of the second and detection of pathogen effectors relieves this repression to initiate immunity. However, whether this mechanism is common to all NLR pairs is not known. Here, we show that the rice NLR pair Pikp-1/Pikp-2, which confers resistance to strains of the blast pathogen Magnaporthe oryzae (syn. Pyricularia oryzae) expressing the AVR-PikD effector, functions via receptor cooperation, with effector-triggered activation requiring both NLRs to trigger the immune response. To investigate the mechanism of Pikp-1/Pikp-2 activation, we expressed truncated variants of these proteins, and made mutations in previously identified NLR sequence motifs. We found that any domain truncation, in either Pikp-1 or Pikp-2, prevented cell death in the presence of AVR-PikD, revealing that all domains are required for activity. Further, expression of individual Pikp-1 or Pikp-2 domains did not result in cell death. Mutations in the conserved P-loop and MHD sequence motifs in both Pikp-1 and Pikp-2 prevented cell death activation, demonstrating that these motifs are required for the function of the two partner NLRs. Finally, we showed that Pikp-1 and Pikp-2 associate to form homo- and hetero-complexes in planta in the absence of AVR-PikD; on co-expression the effector binds to Pikp-1 generating a tri-partite complex. Taken together, we provide evidence that Pikp-1 and Pikp-2 form a fine-tuned system that is activated by AVR-PikD via receptor cooperation rather than negative regulation

    p53 Transactivation and the Impact of Mutations, Cofactors and Small Molecules Using a Simplified Yeast-Based Screening System

    Get PDF
    The p53 tumor suppressor, which is altered in most cancers, is a sequence-specific transcription factor that is able to modulate the expression of many target genes and influence a variety of cellular pathways. Inactivation of the p53 pathway in cancer frequently occurs through the expression of mutant p53 protein. In tumors that retain wild type p53, the pathway can be altered by upstream modulators, particularly the p53 negative regulators MDM2 and MDM4. promoter, ii) single copy, chromosomally located p53-responsive and control luminescence reporters, iii) enhanced chemical uptake using modified ABC-transporters, iv) small-volume formats for treatment and dual-luciferase assays, and v) opportunities to co-express p53 with other cofactor proteins. This robust system can distinguish different levels of expression of WT and mutant p53 as well as interactions with MDM2 or 53BP1.We found that the small molecules Nutlin and RITA could both relieve the MDM2-dependent inhibition of WT p53 transactivation function, while only RITA could impact p53/53BP1 functional interactions. PRIMA-1 was ineffective in modifying the transactivation capacity of WT p53 and missense p53 mutations. This dual-luciferase assay can, therefore, provide a high-throughput assessment tool for investigating a matrix of factors that can influence the p53 network, including the effectiveness of newly developed small molecules, on WT and tumor-associated p53 mutants as well as interacting proteins

    Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo

    Get PDF
    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein

    Unified Process Modeling with UPROM Tool

    No full text
    UPROM tool is a business process modeling tool designed to conduct business process and user requirements analysis in an integrated way to constitute a basis for process automation. Usually, business process models are not utilized systematically to develop related artifacts, specifically when a process-aware information system is to be developed to automate those processes. This results in completeness, consistency and maintainability problems for those artifacts. Unified business process modeling methodology, UPROM, is developed to integrate process modeling and practices. Enabling the application of UPROM, the tool provides editors for six different diagram types based on a common meta-model. It offers features so that modelers can develop a cohesive set of models. Using these models, UPROM tool can be used to automatically generate artifacts of user requirements document, COSMIC based software size estimation, process definition document and business glossary

    Belantamab mafodotin in combination with novel agents in relapsed/refractory multiple myeloma: DREAMM-5 study design

    Get PDF
    Belantamab mafodotin (belamaf) is a BCMA-targeted antibody-drug conjugate recently approved as monotherapy for adults with relapsed/refractory multiple myeloma who have received ≥4 prior therapies. Belamaf binds to BCMA and eliminates myeloma cells by multimodal mechanisms of action. The cytotoxic and potential immunomodulatory properties of belamaf have led to novel combination studies with other anticancer therapies. Here, we describe the rationale and design of DREAMM-5, an ongoing Phase I/II platform study evaluating the safety and efficacy of belamaf combined with novel agents, including GSK3174998 (OX40 agonist), feladilimab (an ICOS; GSK3359609), nirogacestat (a gamma-secretase inhibitor; PF-03084014) and dostarlimab (a PD-1 blocker) versus belamaf monotherapy for patients with relapsed/refractory multiple myeloma. Clinical trial registration: NCT04126200 (ClinicalTrials.gov)
    corecore