100 research outputs found

    Diabetes and pregnancy:national trends over a 15 year period

    Get PDF
    Aims/hypothesis: We aimed to examine time trends in national perinatal outcomes in pregnancies complicated by pre-existing type 1 or type 2 diabetes. Methods: We analysed episode-level data on all obstetric inpatient delivery events (live or stillbirth) between 1 April 1998 and 31 March 2013 (n = 813,921) using the Scottish Morbidity Record (SMR02). Pregnancies to mothers with type 1 (n = 3229) and type 2 (n = 1452) diabetes were identified from the national diabetes database (Scottish Care Information-Diabetes), and perinatal outcomes were compared among women with type 1 diabetes, type 2 diabetes and those without diabetes. Results: The number of pregnancies complicated by diabetes increased significantly, by 44% in type 1 diabetes and 90% in type 2 diabetes, across the 15 years examined, to rates of 1 in 210 and 1 in 504 deliveries, respectively. Compared with women without diabetes, delivery occurred 2.6 weeks earlier (type 1 diabetes 36.7 ± 2.3 weeks) and 2 weeks earlier (type 2 diabetes 37.3 ± 2.4 weeks), respectively, showing significant reductions for both type 1 (from 36.7 weeks to 36.4 weeks, p = 0.03) and type 2 (from 38.0 weeks to 37.2 weeks, p < 0.001) diabetes across the time period. The proportions of preterm delivery were markedly increased in women with diabetes (35.3% type 1 diabetes, 21.8% type 2 diabetes, 6.1% without diabetes; p < 0.0001), and these proportions increased with time for both groups (p < 0.005). Proportions of elective Caesarean sections (29.4% type 1 diabetes, 30.5% type 2 diabetes, 9.6% without diabetes) and emergency Caesarean sections (38.3% type 1 diabetes, 29.1% type 2 diabetes, 14.6% without diabetes) were greatly increased in women with diabetes and increased over time except for stable rates of emergency Caesarean section in type 1 diabetes. Gestational age-, sex- and parity-adjusted z score for birthweight (1.33 ± 1.34; p < 0.001) were higher in type 1 diabetes and increased over time from 1.22 to 1.47 (p < 0.001). Birthweight was also increased in type 2 diabetes (0.94 ± 1.34; p < 0.001) but did not alter with time. There were 65 perinatal deaths in offspring of mothers with type 1 diabetes and 39 to mothers with type 2 diabetes, representing perinatal mortality rates of 20.1 (95% CI 14.7, 24.3) and 26.9 (16.7, 32.9) per 1000 births, respectively, and rates 3.1 and 4.2 times, respectively, those observed in the non-diabetic population (p < 0.001). Stillbirth rates in type 1 and type 2 diabetes were 4.0-fold and 5.1-fold that in the non-diabetic population (p < 0.001). Perinatal mortality and stillbirth rates showed no significant fall over time despite small falls in the rates for the non-diabetic population. Conclusions/interpretation: Women with diabetes are receiving increased intervention in pregnancy (earlier delivery, increased Caesarean section rates), but despite this, higher birthweights are being recorded. Improvements in rates of stillbirth seen in the general population are not being reflected in changes in stillbirth or perinatal mortality in our population with diabetes

    Pediatric meningiomas in The Netherlands 1974–2010: a descriptive epidemiological case study

    Get PDF
    The purpose of this study was to review the epidemiology and the clinical, radiological, pathological, and follow-up data of all surgically treated pediatric meningiomas during the last 35 years in The Netherlands. Patients were identified in the Pathological and Anatomical Nationwide Computerized Archive database, the nationwide network and registry of histopathology and cytopathology in The Netherlands. Pediatric patients of 18 years or younger at first operation in 1974-2009 with the diagnosis meningioma were included. Clinical records, follow-up data, radiological findings, operative reports, and pathological examinations were reviewed. In total, 72 patients (39 boys) were identified. The incidence of operated meningiomas in the Dutch pediatric population is 1:1,767,715 children per year. Median age at diagnosis was 13 years (range 0-18 years). Raised intracranial pressure and seizures were the most frequent signs at presentation. Thirteen (18 %) patients had neurofibromatosis type 2 (NF2). Fifty-three (74 %) patients had a meningioma World Health Organization grade I. Total resection was achieved in 35 of 64 patients. Fifteen patients received radiotherapy postoperatively. Mean follow-up was 4.8 years (range 0-27.8 years). Three patients died as a direct result of their meningioma within 3 years. Four patients with NF2 died as a result of multiple tumors. Nineteen patients had disease progression, requiring additional treatment. Meningiomas are extremely rare in the pediatric population; 25 % of all described meningiomas show biological aggressive behavior in terms of disease progression, requiring additional treatment. The 5-year survival is 83.9 %, suggesting that the biological behavior of pediatric menigiomas is more aggressive than that of its adult counterpart

    Chlorogenic Acid Stimulates Glucose Transport in Skeletal Muscle via AMPK Activation: A Contributor to the Beneficial Effects of Coffee on Diabetes

    Get PDF
    Chlorogenic acid (CGA) has been shown to delay intestinal glucose absorption and inhibit gluconeogenesis. Our aim was to investigate the role of CGA in the regulation of glucose transport in skeletal muscle isolated from db/db mice and L6 skeletal muscle cells. Oral glucose tolerance test was performed on db/db mice treated with CGA and soleus muscle was isolated for 2-deoxyglucose transport study. 2DG transport was also examined in L6 myotubes with or without inhibitors such as wortmannin or compound c. AMPK was knocked down with AMPKα1/2 siRNA to study its effect on CGA-stimulated glucose transport. GLUT 4 translocation, phosphorylation of AMPK and Akt, AMPK activity, and association of IRS-1 and PI3K were investigated in the presence of CGA. In db/db mice, a significant decrease in fasting blood sugar was observed 10 minutes after the intraperitoneal administration of 250 mg/kg CGA and the effect persisted for another 30 minutes after the glucose challenge. Besides, CGA stimulated and enhanced both basal and insulin-mediated 2DG transports in soleus muscle. In L6 myotubes, CGA caused a dose- and time-dependent increase in glucose transport. Compound c and AMPKα1/2 siRNA abrogated the CGA-stimulated glucose transport. Consistent with these results, CGA was found to phosphorylate AMPK and ACC, consistent with the result of increased AMPK activities. CGA did not appear to enhance association of IRS-1 with p85. However, we observed activation of Akt by CGA. These parallel activations in turn increased translocation of GLUT 4 to plasma membrane. At 2 mmol/l, CGA did not cause any significant changes in viability or proliferation of L6 myotubes. Our data demonstrated for the first time that CGA stimulates glucose transport in skeletal muscle via the activation of AMPK. It appears that CGA may contribute to the beneficial effects of coffee on Type 2 diabetes mellitus

    Cashew nut allergy: clinical relevance and allergen characterisation

    Get PDF
    Cashew plant (Anacardium occidentale L.) is the most relevant species of the Anacardium genus. It presents high economic value since it is widely used in human nutrition and in several industrial applications. Cashew nut is a well-appreciated food (belongs to the tree nut group), being widely consumed as snacks and in processed foods by the majority of world's population. However, cashew nut is also classified as a potent allergenic food known to be responsible for triggering severe and systemic immune reactions (e.g. anaphylaxis) in sensitised/allergic individuals that often demand epinephrine treatment and hospitalisation. So far, three groups of allergenic proteins have been identified and characterised in cashew nut: Ana o 1 and Ana o 2 (cupin superfamily) and Ana o 3 (prolamin superfamily), which are all classified as major allergens. The prevalence of cashew nut allergy seems to be rising in industrialised countries with the increasing consumption of this nut. There is still no cure for cashew nut allergy, as well as for other food allergies; thus, the allergic patients are advised to eliminate it from their diets. Accordingly, when carefully choosing processed foods that are commercially available, the allergic consumers have to rely on proper food labelling. In this sense, the control of labelling compliance is much needed, which has prompted the development of proficient analytical methods for allergen analysis. In the recent years, significant research advances in cashew nut allergy have been accomplished, which are highlighted and discussed in this review.This work was supported by FCT/MEC through national funds and co-financed by FEDER, under the Partnership Agreement PT2020 with grant no. UID/QUI/50006/2013–POCI/01/ 0145/FEDER/007265. Joana Costa is grateful to FCT post-doctoral grant (SFRH/BPD/102404/2014) financed by POPH-QREN (subsidised by FSE and MCTES).info:eu-repo/semantics/publishedVersio

    Receptor conversion in distant breast cancer metastases

    Get PDF
    Introduction: When breast cancer patients develop distant metastases, the choice of systemic treatment is usually based on tissue characteristics of the primary tumor as determined by immunohistochemistry (IHC) and/or molecular analysis. Several previous studies have shown that the immunophenotype of distant breast cancer metastases may be different from that of the primary tumor (receptor conversion), leading to inappropriate choice of systemic treatment. The studies published so far are however small and/or methodologically suboptimal. Therefore, definite conclusions that may change clinical practice could not yet be drawn. We therefore aimed to study receptor conversion for estrogen receptor alpha (ER alpha), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) in a large group of distant (non-bone) breast cancer metastases by re-staining all primary tumors and metastases with current optimal immunohistochemical and in situ hybridization methods on full sections. Methods: A total of 233 distant breast cancer metastases from different sites (76 skin, 63 liver, 43 lung, 44 brain and 7 gastro-intestinal) were IHC stained for ER alpha, PR and HER2, and expression was compared to that of the primary tumor. HER2 in situ hybridization (ISH) was done in cases of IHC conversion or when primary tumors or metastases showed an IHC 2+ result. Results: Using a 10% threshold, receptor conversion by IHC for ER alpha, PR occurred in 10.3%, 30.0% of patients, respectively. In 10.7% of patients, conversion from ER+ or PR+ to ER-/PR- and in 3.4% from ER-/PR- to ER+ or PR+ was found. Using a 1% threshold, ER alpha and PR conversion rates were 15.1% and 32.6%. In 12.4% of patients conversion from ER+ or PR+ to ER-/PR-, and 8.2% from ER-/PR-to ER+ or PR+ occurred. HER2 conversion occurred in 5.2%. Of the 12 cases that showed HER2 conversion by IHC, 5 showed also conversion by ISH. One further case showed conversion by ISH, but not by IHC. Conversion was mainly from positive in the primary tumor to negative in the metastases for ER alpha and PR, while HER2 conversion occurred equally both ways. PR conversion occurred significantly more often in liver, brain and gastro-intestinal metastases. Conclusions: Receptor conversion by immunohistochemistry in (non-bone) distant breast cancer metastases does occur, is relatively uncommon for ER alpha and HER2, and is more frequent for PR, especially in brain, liver and gastrointestinal metastase

    Polycomb-Like 3 Promotes Polycomb Repressive Complex 2 Binding to CpG Islands and Embryonic Stem Cell Self-Renewal

    Get PDF
    Polycomb repressive complex 2 (PRC2) trimethylates lysine 27 of histone H3 (H3K27me3) to regulate gene expression during diverse biological transitions in development, embryonic stem cell (ESC) differentiation, and cancer. Here, we show that Polycomb-like 3 (Pcl3) is a component of PRC2 that promotes ESC self-renewal. Using mass spectrometry, we identified Pcl3 as a Suz12 binding partner and confirmed Pcl3 interactions with core PRC2 components by co-immunoprecipitation. Knockdown of Pcl3 in ESCs increases spontaneous differentiation, yet does not affect early differentiation decisions as assessed in teratomas and embryoid bodies, indicating that Pcl3 has a specific role in regulating ESC self-renewal. Consistent with Pcl3 promoting PRC2 function, decreasing Pcl3 levels reduces H3K27me3 levels while overexpressing Pcl3 increases H3K27me3 levels. Furthermore, chromatin immunoprecipitation and sequencing (ChIP-seq) reveal that Pcl3 co-localizes with PRC2 core component, Suz12, and depletion of Pcl3 decreases Suz12 binding at over 60% of PRC2 targets. Mutation of conserved residues within the Pcl3 Tudor domain, a domain implicated in recognizing methylated histones, compromises H3K27me3 formation, suggesting that the Tudor domain of Pcl3 is essential for function. We also show that Pcl3 and its paralog, Pcl2, exist in different PRC2 complexes but bind many of the same PRC2 targets, particularly CpG islands regulated by Pcl3. Thus, Pcl3 is a component of PRC2 critical for ESC self-renewal, histone methylation, and recruitment of PRC2 to a subset of its genomic sites

    Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer

    Get PDF
    Colon tumors from four independent mouse models and 100 human colorectal cancers all exhibited striking recapitulation of embryonic colon gene expression from embryonic days 13.5-18.5

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-19(1,2), host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases(3-7). They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.Radiolog

    Mapping the field: a bibliometric analysis of the literature on university–industry collaborations

    Get PDF
    corecore