25 research outputs found

    The role of sexually transmitted infections in male circumcision effectiveness against HIV – insights from clinical trial simulation

    Get PDF
    BACKGROUND: A landmark randomised trial of male circumcision (MC) in Orange Farm, South Africa recently showed a large and significant reduction in risk of HIV infection, reporting MC effectiveness of 61% (95% CI: 34%–77%). Additionally, two further randomised trials of MC in Kisumu, Kenya and Rakai, Uganda were recently stopped early to report 53% and 48% effectiveness, respectively. Since MC may protect against both HIV and certain sexually transmitted infections (STI), which are themselves cofactors of HIV infection, an important question is the extent to which this estimated effectiveness against HIV is mediated by the protective effect of circumcision against STI. The answer lies in the trial data if the appropriate statistical analyses can be identified to estimate the separate efficacies against HIV and STI, which combine to determine overall effectiveness. OBJECTIVES AND METHODS: Focusing on the MC trial in Kisumu, we used a stochastic prevention trial simulator (1) to determine whether statistical analyses can validly estimate efficacy, (2) to determine whether MC efficacy against STI alone can produce large effectiveness against HIV and (3) to estimate the fraction of all HIV infections prevented that are attributable to efficacy against STI when both efficacies combine. RESULTS: Valid estimation of separate efficacies against HIV and STI as well as MC effectiveness is feasible with available STI and HIV trial data, under Kisumu trial conditions. Under our parameter assumptions, high overall effectiveness of MC against HIV was observed only with a high MC efficacy against HIV and was not possible on the basis of MC efficacy against STI alone. The fraction of all HIV infections prevented which were attributable to MC efficacy against STI was small, except when efficacy of MC specifically against HIV was very low. In the three MC trials which reported between 48% and 61% effectiveness (combining STI and HIV efficacies), the fraction of HIV infections prevented in circumcised males which were attributable to STI was unlikely to be more than 10% to 20%. CONCLUSION: Estimation of efficacy, attributable fraction and effectiveness leads to improved understanding of trial results, gives trial results greater external validity and is essential to determine the broader public health impact of circumcision to men and women

    Heritability of Self-reported Phobic Fear

    Get PDF
    Twin studies on fear and phobia suggest moderate genetic effects. However, results are inconclusive regarding the presence of dominant genetic effects and sex differences. Using an extended twin design, including male and female twins (n = 5,465) and their siblings (n = 1,624), we examined the genetic and environmental influences on blood-injury, social, and agoraphobic fear and investigated their interaction with sex and age. Data of spouses (n = 708) of twins were used to evaluate assortative mating for the three fear dimensions. Results showed that there was no assortative mating for blood-injury, social and agoraphobic fear. Resemblance between biological relatives could be explained by additive and non-additive genetic effects for blood-injury and agoraphobic fear in all participants, and social fear in participants aged 14–25 years. For social fear in participants aged 26–65 only additive genetic effects were detected. Broad-sense heritability estimates ranged from 36 to 51% and were similar for men and women

    Genetic and Environmental Causes of Variation in Trait Resilience in Young People

    Get PDF
    The aim of this multi-informant twin study was to determine the relative role of genetic and environmental factors in explaining variation in trait resilience in adolescents. Participants were consenting families (N = 2,638 twins in 1,394 families), from seven national cohorts (age 12–18 years, both sexes) of monozygotic and dizygotic twins reared together. Questionnaire data on the adolescents’ Ego-resilience (ER89) was collected from mothers, fathers and twins, and analysed by means of multivariate genetic modelling. Variance in trait resilience was best represented in an ADE common pathways model with sex limitation. Variance in the latent psychometric resilience factor was largely explained by additive genetic factors (77% in boys, 70% in girls), with the remaining variance (23 and 30%) attributable to non-shared environmental factors. Additive genetic sources explained more than 50% of the informant specific variation in mothers and fathers scores. In twins, additive and non-additive genetic factors together explained 40% and non-shared environmental factor the remaining 60% of variation. In the mothers’ scores, the additive genetic effect was larger for boys than for girls. The non-additive genetic factor found in the twins’ self ratings was larger in boys than in girls. The remaining sex differences in the specific factors were small. Trait resilience is largely genetically determined. Estimates based on several informants rather than single informants approaches are recommended

    Heterochromatin and the molecular mechanisms of 'parent-of-origin' effects in animals.

    Get PDF
    Twenty five years ago it was proposed that conserved components of constitutive heterochromatin assemble heterochromatinlike complexes in euchromatin and this could provide a general mechanism for regulating heritable (cell-to-cell) changes in gene expressibility. As a special case, differences in the assembly of heterochromatin-like complexes on homologous chromosomes might also regulate the parent-of-origin-dependent gene expression observed in placental mammals. Here, the progress made in the intervening period with emphasis on the role of heterochromatin and heterochromatin-like complexes in parent-of-origin effects in animals is reviewed

    The emerging pharmacology and function of GPR35 in the nervous system

    Get PDF
    G protein-coupled receptor 35 (GPR35) is an orphan G protein-coupled receptor (GPCR) that can be activated by kynurenic acid at high micromolar concentrations. A previously unappreciated mechanism of action of GPR35 has emerged as a Gαi/o-coupled inhibitor of synaptic transmission, a finding that has significant implications for the accepted role of kynurenic acid as a broad-spectrum antagonist of the NMDA, AMPA/kainite and α7 nicotinic receptors. In conjunction with previous findings that link agonism of GPR35 with significant reduction in nociceptive pain, GPR35 has emerged as a potential effector of regulation of mechanical sensitivity and analgesia of the Ret tyrosine kinase, and as a receptor involved in the transmission of anti-inflammatory effects of aspirin- potentially through affecting leucocyte rolling, adhesion and extravasation. Single nucleotide polymorphisms of GPR35 have linked this receptor to coronary artery calcification, inflammatory bowel disease and primary sclerosing cholangitis, while chromosomal aberrations of the 2q37.3 locus and altered copy number of GPR35 have been linked with autism, Albight's hereditary osteodystrophy-like syndrome, and congenital malformations, respectively. Herein, we present an update on both the pharmacology and potential function of GPR35, particularly pertaining to the nervous system. This review forms part of a special edition focussing on the role of lipid-sensing GPCRs in the nervous system

    Site-specific integration of adeno-associated virus involves partial duplication of the target locus

    No full text
    A variety of viruses establish latency by integrating their genome into the host genome. The integration event generally occurs in a nonspecific manner, precluding the prediction of functional consequences from resulting disruptions of affected host genes. The nonpathogenic adeno-associated virus (AAV) is unique in its ability to stably integrate in a site-specific manner into the human MBS85 gene. To gain a better understanding of the integration mechanism and the consequences of MBS85 disruption, we analyzed the molecular structure of AAV integrants in various latently infected human cell lines. Our study led to the observation that AAV integration causes an extensive but partial duplication of the target gene. Intriguingly, the molecular organization of the integrant leaves the possibility that a functional copy of the disrupted target gene could potentially be preserved despite the resulting rearrangements. A latently infected, Mbs85-targeted mouse ES cell line was generated to study the functional consequences of the observed duplication-based integration mechanism. AAV-modified ES cell lines continued to self-renew, maintained their multilineage differentiation potential and contributed successfully to mouse development when injected into blastocysts. Thus, our study reveals a viral strategy for targeted genome addition with the apparent absence of functional consequences
    corecore