28 research outputs found

    Two Novel Mutations in the Aquaporin 2 Gene in a Girl with Congenital Nephrogenic Diabetes Insipidus

    Get PDF
    Congenital nephrogenic diabetes insipidus (CNDI) is a rare inherited disorder characterized by insensitivity of the kidney to the antidiuretic effect of vasopressin. There are three inheritance patterns of CNDI: the X-linked recessive form associated with vasopressin V2 receptor gene mutations, and the autosomal recessive and dominant forms associated with aquaporin-2 gene (AQP2) mutations. The evaluation for polyuria and polydipsia in a one-month-old Korean girl revealed no response to vasopressin and confirmed the diagnosis of CNDI. Because the child was female without family history of CNDI, her disease was thought to be an autosomal recessive form. We analyzed the AQP2 gene and detected a compound heterozygous missense point mutation: 70Ala (GCC) to Asp (GAC) in exon 1 inherited from her father and 187Arg (CGC) to His (CAC) in exon 3 inherited from her mother. The first mutation is located within the first NPA motif of the AQP2 molecule and the second one right after the second NPA motif. This is the first report to characterize AQP2 mutations in Korean patients with autosomal recessive CNDI, and expands the spectrum of AQP2 mutations by reporting two novel mutation, 70Ala (GCC) to Asp (GAC) and 187Arg (CGC) to His (CAC)

    Decreased brain venous vasculature visibility on susceptibility-weighted imaging venography in patients with multiple sclerosis is related to chronic cerebrospinal venous insufficiency.

    Get PDF
    BACKGROUND: The potential pathogenesis between the presence and severity of chronic cerebrospinal venous insufficiency (CCSVI) and its relation to clinical and imaging outcomes in brain parenchyma of multiple sclerosis (MS) patients has not yet been elucidated. The aim of the study was to investigate the relationship between CCSVI, and altered brain parenchyma venous vasculature visibility (VVV) on susceptibility-weighted imaging (SWI) in patients with MS and in sex- and age-matched healthy controls (HC). METHODS: 59 MS patients, 41 relapsing-remitting and 18 secondary-progressive, and 33 HC were imaged on a 3T GE scanner using pre- and post-contrast SWI venography. The presence and severity of CCSVI was determined using extra-cranial and trans-cranial Doppler criteria. Apparent total venous volume (ATVV), venous intracranial fraction (VIF) and average distance-from-vein (DFV) were calculated for various vein mean diameter categories: .9 mm. RESULTS: CCSVI criteria were fulfilled in 79.7% of MS patients and 18.2% of HC (p < .0001). Patients with MS showed decreased overall ATVV, ATVV of veins with a diameter < .3 mm, and increased DFV compared to HC (all p < .0001). Subjects diagnosed with CCSVI had significantly increased DFV (p < .0001), decreased overall ATVV and ATVV of veins with a diameter < .3 mm (p < .003) compared to subjects without CCSVI. The severity of CCSVI was significantly related to decreased VVV in MS (p < .0001) on pre- and post-contrast SWI, but not in HC. CONCLUSIONS: MS patients with higher number of venous stenoses, indicative of CCSVI severity, showed significantly decreased venous vasculature in the brain parenchyma. The pathogenesis of these findings has to be further investigated, but they suggest that reduced metabolism and morphological changes of venous vasculature may be taking place in patients with MS

    The importance of krill predation in the Southern Ocean

    Get PDF

    Ionic Liquid Microcapsules: Formation and Application of Polystyrene Microcapsules with Ionic Liquid Cores

    No full text
    © 2019 American Chemical Society. The synthesis of 2-3 μm spherical microcapsules with a polymer shell and a liquid core composed of ionic liquid (IL) ([Bmim][NTf2]) is described. These discrete IL microcapsules are prepared quickly and in large quantity in a low temperature, one pot synthesis, by a modified coacervation technique. These IL microcapsules show ability to release dye from the IL core into solution through a polymer membrane and also concentrate metal ions from solution into the microcapsules
    corecore