41 research outputs found

    Cognitive and physical fatigue—the experience and consequences of ‘brain fog’ after spontaneous coronary artery dissection: a qualitative study

    Get PDF
    AIMS: Brain fog and fatigue are common issues after acute coronary syndrome. However, little is known about the nature and impact of these experiences in spontaneous coronary artery dissection (SCAD) survivors. The aims of this study were to understand the experiences of brain fog and the coping strategies used after SCAD.METHODS AND RESULTS: Participants were recruited from the Victor Chang Cardiac Research Institute Genetics Study database and were considered eligible if their event occurred within 12-months. Seven semi-structured online focus groups were conducted between December to January 2021-2022, with this study reporting findings related to brain fog and fatigue. Interviews were transcribed and thematically analysed using an iterative approach. Participants (N=30) were a mean age of 52.2 ((9.5) and mostly female (n=27, 90%). The overarching theme of brain fog after SCAD included four main themes: how brain fog is experienced, perceived causes, impacts, and how people cope. Experiences included memory lapses, difficulty concentrating and impaired judgement, and perceived causes included medication, fatigue and tiredness, and menopause and hormonal changes. Impacts of brain fog included rumination, changes in self-perception, disruption to hobbies/pastimes, and limitations at work. Coping mechanisms included setting reminders and expectations, being one's own advocate, lifestyle and self-determined medication adjustments, and support from peers.CONCLUSION: Brain fog is experienced by SCAD survivors and the impacts are varied and numerous, including capacity to work. SCAD survivors reported difficulty understanding causes and found their own path to coping. Recommendations for clinicians are provided.</p

    Psychosocial and lifestyle impacts of spontaneous coronary artery dissection: A quantitative study.

    Get PDF
    IntroductionRecent studies suggest that acute myocardial infarction due to spontaneous coronary artery dissection (SCAD) carries significant psychosocial burden. This survey-based quantitative study builds on our earlier qualitative investigation of the psychosocial impacts of SCAD in Australian SCAD survivors. The study aimed to document the prevalence and predictors of a broad range of psychosocial and lifestyle impacts of SCAD.MethodAustralian SCAD survivors currently enrolled in the Victor Chang Cardiac Research Institute genetics study were invited to participate in an online survey to assess the psychosocial impacts of SCAD. Participants completed a questionnaire, developed using findings from our earlier qualitative research, which assessed 48 psychosocial and five lifestyle impacts of SCAD. Participants also provided demographic and medical data and completed validated measures of anxiety and depression.ResultsOf 433 SCAD survivors invited to participate, 310 (72%) completed the questionnaire. The most common psychosocial impacts were 'shock about having a heart attack' (experienced by 87% respondents), 'worry about having another SCAD' (81%), 'concern about triggering another SCAD' (77%), 'uncertainty about exercise and physical activity' (73%) and 'confusion about safe levels of activity and exertion' (73.0%) and 'being overly aware of bodily sensations' (73%). In terms of lifestyle impacts, the SCAD had impacted on work capacity for almost two thirds of participants, while one in ten had sought financial assistance. The key predictors of psychosocial impacts were being under 50, current financial strain, and trade-level education. The key predictors of lifestyle impacts were being over 50, SCAD recurrence, trade-level education, and current financial strain. All psychosocial impacts and some lifestyle impacts were associated with increased risk of anxiety and/or depression.Conclusion and implicationsThis quantitative study extends our previous qualitative investigation by documenting the prevalence of each of 48 psychosocial and five lifestyle impacts identified in our earlier focus group research, and by providing risk factors for greater SCAD impacts. The findings suggest the need for supports to address initial experiences of shock, as well as fears and uncertainties regarding the future, including SCAD recurrence and exercise resumption. Support could be targeted to those with identified risk factors. Strategies to enable SCAD survivors to remain in or return to the paid workforce are also indicated

    Fibulin-3 is necessary to prevent cardiac rupture following myocardial infarction

    Get PDF
    Despite the high prevalence of heart failure in the western world, there are few effective treatments. Fibulin-3 is a protein involved in extracellular matrix (ECM) structural integrity, however its role in the heart is unknown. We have demonstrated, using single cell RNA-seq, that fibulin-3 was highly expressed in quiescent murine cardiac fibroblasts, with expression highest prior to injury and late post-infarct (from ~ day-28 to week-8). In humans, fibulin-3 was upregulated in left ventricular tissue and plasma of heart failure patients. Fibulin-3 knockout (Efemp1−/−) and wildtype mice were subjected to experimental myocardial infarction. Fibulin-3 deletion resulted in significantly higher rate of cardiac rupture days 3–6 post-infarct, indicating a weak and poorly formed scar, with severe ventricular remodelling in surviving mice at day-28 post-infarct. Fibulin-3 knockout mice demonstrated less collagen deposition at day-3 post-infarct, with abnormal collagen fibre-alignment. RNA-seq on day-3 infarct tissue revealed upregulation of ECM degradation and inflammatory genes, but downregulation of ECM assembly/structure/organisation genes in fibulin-3 knockout mice. GSEA pathway analysis showed enrichment of inflammatory pathways and a depletion of ECM organisation pathways. Fibulin-3 originates from cardiac fibroblasts, is upregulated in human heart failure, and is necessary for correct ECM organisation/structural integrity of fibrotic tissue to prevent cardiac rupture post-infarct

    Oxidation Regulates the Inflammatory Properties of the Murine S100 Protein S100A8

    Get PDF
    The myeloid cell-derived calcium-binding murine protein, S100A8, is secreted to act as a chemotactic factor at picomolar concentrations, stimulating recruitment of myeloid cells to inflammatory sites, S100A8 may be exposed to oxygen metabolites, particularly hypochlorite, the major oxidant generated by activated neutrophils at inflammatory sites. Here we show that hypochlorite oxidizes the single Cys residue (Cys(41)) of S100A8. Electrospray mass spectrometry and SDS-polyacrylamide gel electrophoresis analysis indicated that low concentrations of hypochlorite (40 mu M) converted 70-80% of S100A8 to the disulfide-linked homodimer, The mass was 20,707 Da, 92 Da more than expected, indicating additional oxidation of susceptible amino acids (possibly methionine). Phorbol 12-myristate 13-acetate activation of differentiated HL-60 granulocytic cells generated an oxidative burst that was sufficient to efficiently oxidize exogenous S100A8 within 10 min, and results implicate involvement of the myeloperoxidase system. Moreover, disulfide-linked dimer was identified in lung lavage fluid of mice with endotoxin-induced pulmonary injury. S100A8 dimer was inactive in chemotaxis and failed to recruit leukocytes in vivo. Positive chemotactic activity of recombinant Ala(41)S100A8 indicated that Cys41 was not essential for function and suggested that covalent dimerization may structurally modify accessibility of the chemotactic hinge domain. Disulfide-dependent dimerization may be a physiologically significant regulatory mechanism controlling S100A8-provoked leukocyte recruitment

    Kontracepcija

    Get PDF
    <div><p>Aims</p><p>To determine the mechanisms by which the α<sub>1A</sub>-adrenergic receptor (AR) regulates cardiac contractility.</p><p>Background</p><p>We reported previously that transgenic mice with cardiac-restricted α<sub>1A</sub>-AR overexpression (α<sub>1A</sub>-TG) exhibit enhanced contractility but not hypertrophy, despite evidence implicating this Gα<sub>q/11</sub>-coupled receptor in hypertrophy.</p><p>Methods</p><p>Contractility, calcium (Ca<sup>2+</sup>) kinetics and sensitivity, and contractile proteins were examined in cardiomyocytes, isolated hearts and skinned fibers from α<sub>1A</sub>-TG mice (170-fold overexpression) and their non-TG littermates (NTL) before and after α<sub>1A</sub>-AR agonist stimulation and blockade, angiotensin II (AngII), and Rho kinase (ROCK) inhibition.</p><p>Results</p><p>Hypercontractility without hypertrophy with α<sub>1A</sub>-AR overexpression is shown to result from increased intracellular Ca<sup>2+</sup> release in response to agonist, augmenting the systolic amplitude of the intracellular Ca<sup>2+</sup> concentration [Ca<sup>2+</sup>]<sub>i</sub> transient without changing resting [Ca<sup>2+</sup>]<sub>i</sub>. In the <i>absence</i> of agonist, however, α<sub>1A</sub>-AR overexpression <i>reduced</i> contractility despite unchanged [Ca<sup>2+</sup>]<sub>i</sub>. This hypocontractility is not due to heterologous desensitization: the contractile response to AngII, acting via its Gα<sub>q/11</sub>-coupled receptor, was unaltered. Rather, the hypocontractility is a pleiotropic signaling effect of the α<sub>1A</sub>-AR in the absence of agonist, inhibiting RhoA/ROCK activity, resulting in hypophosphorylation of both myosin phosphatase targeting subunit 1 (MYPT1) and cardiac myosin light chain 2 (cMLC2), reducing the Ca<sup>2+</sup> sensitivity of the contractile machinery: all these effects were rapidly reversed by selective α<sub>1A</sub>-AR blockade. Critically, ROCK inhibition in normal hearts of NTLs without α<sub>1A</sub>-AR overexpression caused hypophosphorylation of both MYPT1 and cMLC2, and rapidly reduced basal contractility.</p><p>Conclusions</p><p>We report for the first time pleiotropic α<sub>1A</sub>-AR signaling and the physiological role of RhoA/ROCK signaling in maintaining contractility in the normal heart.</p></div

    Association of the PHACTR1/EDN1 genetic locus with spontaneous coronary artery dissection

    Get PDF
    Background: Spontaneous coronary artery dissection (SCAD) is an increasingly recognized cause of acute coronary syndromes (ACS) afflicting predominantly younger to middle-aged women. Observational studies have reported a high prevalence of extracoronary vascular anomalies, especially fibromuscular dysplasia (FMD) and a low prevalence of coincidental cases of atherosclerosis. PHACTR1/EDN1 is a genetic risk locus for several vascular diseases, including FMD and coronary artery disease, with the putative causal noncoding variant at the rs9349379 locus acting as a potential enhancer for the endothelin-1 (EDN1) gene. Objectives: This study sought to test the association between the rs9349379 genotype and SCAD. Methods: Results from case control studies from France, United Kingdom, United States, and Australia were analyzed to test the association with SCAD risk, including age at first event, pregnancy-associated SCAD (P-SCAD), and recurrent SCAD. Results: The previously reported risk allele for FMD (rs9349379-A) was associated with a higher risk of SCAD in all studies. In a meta-analysis of 1,055 SCAD patients and 7,190 controls, the odds ratio (OR) was 1.67 (95% confidence interval [CI]: 1.50 to 1.86) per copy of rs9349379-A. In a subset of 491 SCAD patients, the OR estimate was found to be higher for the association with SCAD in patients without FMD (OR: 1.89; 95% CI: 1.53 to 2.33) than in SCAD cases with FMD (OR: 1.60; 95% CI: 1.28 to 1.99). There was no effect of genotype on age at first event, P-SCAD, or recurrence. Conclusions: The first genetic risk factor for SCAD was identified in the largest study conducted to date for this condition. This genetic link may contribute to the clinical overlap between SCAD and FMD

    Thyroid hormone action in postnatal heart development

    Get PDF
    Thyroid hormone is a critical regulator of cardiac growth and development, both in fetal life and postnatally. Here we review the role of thyroid hormone in postnatal cardiac development, given recent insights into its role in stimulating a burst of cardiomyocyte proliferation in the murine heart in preadolescence; a response required to meet the massive increase in circulatory demand predicated by an almost quadrupling of body weight during a period of about 21 days from birth to adolescence. Importantly, thyroid hormone metabolism is altered by chronic diseases, such as heart failure and ischemic heart disease, as well as in very sick children requiring surgery for congenital heart diseases, which results in low T3 syndrome that impairs cardiovascular function and is associated with a poor prognosis. Therapy with T3 or thyroid hormone analogs has been shown to improve cardiac contractility; however, the mechanism is as yet unknown. Given the postnatal cardiomyocyte mitogenic potential of T3, its ability to enhance cardiac function by promoting cardiomyocyte proliferation warrants further consideration

    Opposing Effects of Two Tissue Transglutaminase Protein Isoforms in Neuroblastoma Cell Differentiation*

    No full text
    We have demonstrated previously that the Myc oncoprotein blocks cancer cell differentiation by forming a novel transcriptional repressor complex with histone deacetylase and inhibiting gene transcription of tissue transglutaminase (TG2). Moreover, induction of TG2 gene transcription and transamidase activity is essential for the differentiating effects of retinoids in cancer cells. Here, we show that two structurally distinct TG2 protein isoforms, the full-length (TG2-L) and the short form (TG2-S), exert opposing effects on cell differentiation. Repression of TG2-L with small interfering RNA, which did not affect TG2-S expression, induced dramatic neuritic differentiation in neuroblastoma cells. In contrast, overexpression of TG2-S or a GTP-binding-deficient mutant of TG2-L (R580A), both of which lack the GTP-binding Arg-580 residue, induced neuroblastoma cell differentiation, which was blocked by an inhibitor of transamidase activity. Whereas N-Myc repressed and retinoid activated both TG2 isoforms, repression of TG2-L, but not simultaneous repression of TG2-L and TG2-S, enhanced neuroblastoma cell differentiation due to N-Myc small interfering RNA or retinoid. Moreover, suppression of vasoactive intestinal peptide (VIP) expression alone induced neuroblastoma cell differentiation, and VIP was up-regulated by TG2-L, but not TG2-S. Taken together, our data indicate that TG2-L and TG2-S exert opposite effects on cell differentiation due to differences in GTP binding and modulation of VIP gene transcription. Our findings highlight the potential importance of repressing the GTP binding activity of TG2-L or activating the transamidase activity of TG2-L or TG2-S for the treatment of neuroblastoma, and possibly also other Myc-induced malignancies, and for enhancing retinoid anticancer effects
    corecore