18 research outputs found

    Antihydrogen formation in low-energy antiproton collisions with excited-state positronium atoms

    Get PDF
    © 2018, Springer Nature Switzerland AG. The convergent close-coupling method is used to obtain cross sections for antihydrogen formation in low-energy antiproton collisions with positronium (Ps) atoms in specified initial excited states with principal quantum numbers ni= 5. The threshold behaviour as a function of the Ps kinetic energy, E, is consistent with the 1/E law expected from threshold theory for all initial states. We find that the increase in the cross sections is muted above ni= 3 and that here their scaling is roughly consistent with ni2, rather than the classically expected increase as ni4

    Quantum suppression of antihydrogen formation in positronium-antiproton scattering

    Get PDF
    Calculation of antihydrogen formation from antiproton-positronium collisions, with the positroniun in excited states. Novelty is the extension to positronium states with principal quantum numbers 4 and 5 and the discovery that the increase in the cross section is muted over simple expectations due to a suppression effect.This effect is due to a centrifugal barrier-type effect, which markedly reduces the influence of the higher angular momentum components which typically provide the cross section enhancements at lower values of n

    Roadmap on dynamics of molecules and clusters in the gas phase

    Get PDF
    This roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty order of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity from the smallest (diatomic) molecules to clusters and nanoparticles. Combining some of these techniques opens up new avenues to unravel hitherto unexplored reaction pathways and mechanisms, and to establish their significance in, e.g. radiotherapy and radiation damage on the nanoscale, astrophysics, astrochemistry and atmospheric science
    corecore