17 research outputs found

    Patterns and drivers of megabenthic secondary production on the Barents Sea shelf

    Get PDF
    Megabenthos plays a major role in the overall energy flow on Arctic shelves, but information on megabenthic secondary production on large spatial scales is scarce. Here, we estimated for the first time megabenthic secondary production for the entire Barents Sea shelf by applying a species-based empirical model to an extensive dataset from the joint Norwegian− Russian ecosystem survey. Spatial patterns and relationships were analyzed within a GIS. The environmental drivers behind the observed production pattern were identified by applying an ordinary least squares regression model. Geographically weighted regression (GWR) was used to examine the varying relationship of secondary production and the environment on a shelfwide scale. Significantly higher megabenthic secondary production was found in the northeastern, seasonally ice-covered regions of the Barents Sea than in the permanently ice-free southwest. The environmental parameters that significantly relate to the observed pattern are bottom temperature and salinity, sea ice cover, new primary production, trawling pressure, and bottom current speed. The GWR proved to be a versatile tool for analyzing the regionally varying relationships of benthic secondary production and its environmental drivers (R2 = 0.73). The observed pattern indicates tight pelagic− benthic coupling in the realm of the productive marginal ice zone. Ongoing decrease of winter sea ice extent and the associated poleward movement of the seasonal ice edge point towards a distinct decline of benthic secondary production in the northeastern Barents Sea in the future

    First observation of krill spawning in the high Arctic Kongsfjorden, west Spitsbergen

    Get PDF
    In the past, two euphausiid species prevailed in the high Arctic Kongsfjorden, the arcto-boreal Thysanoessa inermis (Kroeyer, 1846) and Thysanoessa raschii (Sars. 1964). Both were considered expatriates from the Barents Sea or Norwegian Sea and non-reproductive due to low temperatures. The macro-zooplankton of the fjord has been studied as a component in an ecosystem context since 2006, including baseline investigation of distribution and functional performance of key species. In recent years, three additional krill species were regularly detected in the fjord and are the focus of an intensive long-term study. Of these species, Thysanoessa longicaudata (Kroeyer, 1846) and Meganyctiphanes norvegica (Sars, 1857) are typical for the boreal Atlantic whereas Nematoscelis megalops (Sars, 1883) has a broad distribution in temperate to subtropical provinces. Their occurrence in the Kongsfjorden clearly indicates increasing Atlantic influence. During the 2011 campaign, T. raschii was observed spawning in the field for the first time and showed development up to the naupliar stage in the laboratory. Should more evidence of reproduction be encountered in any of the five krill species in the Kongsfjorden in the future, it will be taken as an indication of a changing environment concerning temperature and food web composition

    Change in fish community structure in the barents sea

    Get PDF
    Change in oceanographic conditions causes structural alterations in marine fish communities, but this effect may go undetected as most monitoring programs until recently mainly have focused on oceanography and commercial species rather than on whole ecosystems. In this paper, the objective is to describe the spatial and temporal changes in the Barents Sea fish community in the period 1992–2004 while taking into consideration the observed abundance and biodiversity patterns for all 82 observed fish species. We found that the spatial structure of the Barents Sea fish community was determined by abiotic factors such as temperature and depth. The observed species clustered into a deep assemblage, a warm water southern assemblage, both associated with Atlantic water, and a cold water north-eastern assemblage associated with mixed water. The latitude of the cold water NE and warm water S assemblages varied from year to year, but no obvious northward migration was observed over time. In the period 1996–1999 we observed a significant reduction in total fish biomass, abundance, mean fish weight, and a change in community structure including an increase in the pelagic/demersal ratio. This change in community structure is probably due to extremely cold conditions in 1996 impacting on a fish community exposed to historically high fishing rates. After 1999 the fish community variables such as biomass, abundance, mean weight, P/D ratio as well as community composition did not return to levels of the early 90s, although fishing pressure and climatic conditions returned to earlier levels.The data were collected during the former annual shrimp survey conducted by the Norwegian Institute of Fisheries and Aquaculture (NIFA) and the Institute of Marine Research (IMR) in the Barents Sea from 1992 until 2004, and were funded by the Norwegian Ministry of Fisheries and Coastal Affairs. The scientific work was also funded by the Norwegian Government through the above mentioned ministry and through the Ministry of Education and Research. Michael Greenacre’s research was partially funded by the BBVA Foundation in Madrid and a grant from the Spanish Ministry of Education MTM2012-37195. The funders had no role in study design, data collection and analysis, decision to publish or the preparation of the manuscript
    corecore