200 research outputs found

    Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation.

    Get PDF
    Recent studies indicate that insulin stimulation of glucose transporter (GLUT)4 translocation requires at least two distinct insulin receptor-mediated signals: one leading to the activation of phosphatidylinositol 3 (PI-3) kinase and the other to the activation of the small GTP binding protein TC10. We now demonstrate that TC10 is processed through the secretory membrane trafficking system and localizes to caveolin-enriched lipid raft microdomains. Although insulin activated the wild-type TC10 protein and a TC10/H-Ras chimera that were targeted to lipid raft microdomains, it was unable to activate a TC10/K-Ras chimera that was directed to the nonlipid raft domains. Similarly, only the lipid raft-localized TC10/ H-Ras chimera inhibited GLUT4 translocation, whereas the TC10/K-Ras chimera showed no significant inhibitory activity. Furthermore, disruption of lipid raft microdomains by expression of a dominant-interfering caveolin 3 mutant (Cav3/DGV) inhibited the insulin stimulation of GLUT4 translocation and TC10 lipid raft localization and activation without affecting PI-3 kinase signaling. These data demonstrate that the insulin stimulation of GLUT4 translocation in adipocytes requires the spatial separation and distinct compartmentalization of the PI-3 kinase and TC10 signaling pathways

    Crucial Ignored Parameters on Nanotoxicology: The Importance of Toxicity Assay Modifications and “Cell Vision”

    Get PDF
    Until now, the results of nanotoxicology research have shown that the interactions between nanoparticles (NPs) and cells are remarkably complex. In order to get a deep understanding of the NP-cell interactions, scientists have focused on the physicochemical effects. However, there are still considerable debates about the regulation of nanomaterials and the reported results are usually in contradictions. Here, we are going to introduce the potential key reasons for these conflicts. In this case, modification of conventional in vitro toxicity assays, is one of the crucial ignored matter in nanotoxicological sciences. More specifically, the conventional methods neglect important factors such as the sedimentation of NPs and absorption of proteins and other essential biomolecules onto the surface of NPs. Another ignored matter in nanotoxicological sciences is the effect of cell “vision” (i.e., cell type). In order to show the effects of these ignored subjects, we probed the effect of superparamagnetic iron oxide NPs (SPIONs), with various surface chemistries, on various cell lines. We found thatthe modification of conventional toxicity assays and the consideration of the “cell vision” concept are crucial matters to obtain reliable, and reproducible nanotoxicology data. These new concepts offer a suitable way to obtain a deep understanding on the cell-NP interactions. In addition, by consideration of these ignored factors, the conflict of future toxicological reports would be significantly decreased

    Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes

    Get PDF
    The nuclear pore complex (NPC) is the gate for transport between the cell nucleus and the cytoplasm. Small molecules cross the NPC by passive diffusion, but molecules larger than ∼5 nm must bind to nuclear transport receptors to overcome a selective barrier within the NPC1. Although the structure and shape of the cytoplasmic ring of the NPC are relatively well characterized2, 3, 4, 5, the selective barrier is situated deep within the central channel of the NPC and depends critically on unstructured nuclear pore proteins5, 6, and is therefore not well understood. Here, we show that stiffness topography7 with sharp atomic force microscopy tips can generate nanoscale cross-sections of the NPC. The cross-sections reveal two distinct structures, a cytoplasmic ring and a central plug structure, which are consistent with the three-dimensional NPC structure derived from electron microscopy2, 3, 4, 5. The central plug persists after reactivation of the transport cycle and resultant cargo release, indicating that the plug is an intrinsic part of the NPC barrier. Added nuclear transport receptors accumulate on the intact transport barrier and lead to a homogenization of the barrier stiffness. The observed nanomechanical properties in the NPC indicate the presence of a cohesive barrier to transport and are quantitatively consistent with the presence of a central condensate of nuclear pore proteins in the NPC channel

    Efficient Nuclear Transport of Structurally Disturbed Cargo: Mutations in a Cargo Protein Switch Its Cognate Karyopherin

    Get PDF
    The Karyopherin (Kap) family of nuclear transport receptors enables trafficking of proteins to and from the nucleus in a precise, regulated manner. Individual members function in overlapping pathways, while simultaneously being very specific for their main cargoes. The details of this apparent contradiction and rules governing pathway preference remain to be further elucidated. S. cerevisiae Lhp1 is an abundant protein that functions as an RNA chaperone in a variety of biologically important processes. It localizes almost exclusively to the nucleus and is imported by Kap108. We show that mutation of 3 of the 275 residues in Lhp1 alters its import pathway to a Kap121-dependent process. This mutant does not retain wild-type function and is bound by several chaperones. We propose that Kap121 also acts as a chaperone, one that can act as a genetic buffer by transporting mutated proteins to the nucleus

    RASOnD - A comprehensive resource and search tool for RAS superfamily oncogenes from various species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Ras superfamily plays an important role in the control of cell signalling and division. Mutations in the Ras genes convert them into active oncogenes. The Ras oncogenes form a major thrust of global cancer research as they are involved in the development and progression of tumors. This has resulted in the exponential growth of data on Ras superfamily across different public databases and in literature. However, no dedicated public resource is currently available for data mining and analysis on this family. The present database was developed to facilitate straightforward accession, retrieval and analysis of information available on Ras oncogenes from one particular site.</p> <p>Description</p> <p>We have developed the RAS Oncogene Database (RASOnD) as a comprehensive knowledgebase that provides integrated and curated information on a single platform for oncogenes of Ras superfamily. RASOnD encompasses exhaustive genomics and proteomics data existing across diverse publicly accessible databases. This resource presently includes overall 199,046 entries from 101 different species. It provides a search tool to generate information about their nucleotide and amino acid sequences, single nucleotide polymorphisms, chromosome positions, orthologies, motifs, structures, related pathways and associated diseases. We have implemented a number of user-friendly search interfaces and sequence analysis tools. At present the user can (i) browse the data (ii) search any field through a simple or advance search interface and (iii) perform a BLAST search and subsequently CLUSTALW multiple sequence alignment by selecting sequences of Ras oncogenes. The Generic gene browser, GBrowse, JMOL for structural visualization and TREEVIEW for phylograms have been integrated for clear perception of retrieved data. External links to related databases have been included in RASOnD.</p> <p>Conclusions</p> <p>This database is a resource and search tool dedicated to Ras oncogenes. It has utility to cancer biologists and cell molecular biologists as it is a ready source for research, identification and elucidation of the role of these oncogenes. The data generated can be used for understanding the relationship between the Ras oncogenes and their association with cancer. The database updated monthly is freely accessible online at <url>http://202.141.47.181/rasond/</url> and <url>http://www.aiims.edu/RAS.html</url>.</p

    PAR6, A Potential Marker for the Germ Cells Selected to Form Primordial Follicles in Mouse Ovary

    Get PDF
    Partitioning-defective proteins (PAR) are detected to express mainly in the cytoplast, and play an important role in cell polarity. However, we showed here that PAR6, one kind of PAR protein, was localized in the nuclei of mouse oocytes that formed primordial follicles during the perinatal period, suggesting a new role of PAR protein. It is the first time we found that, in mouse fetal ovaries, PAR6 appeared in somatic cell cytoplasm and fell weak when somatic cells invaded germ cell cysts at 17.5 days post coitus (dpc). Meanwhile, the expression of PAR6 was observed in cysts, and became strong in the nuclei of some germ cells at 19.5 dpc and all primordial follicular oocytes at 3 day post parturition (dpp), and then obviously declined when the primordial follicles entered the folliculogenic growth phase. During the primordial follicle pool foundation, the number of PAR6 positive germ cells remained steady and was consistent with that of formed follicles at 3 dpp. There were no TUNEL (apoptosis examination) positive germ cells stained with PAR6 at any time studied. The number of follicles significantly declined when 15.5 dpc ovaries were treated with the anti-PAR6 antibody and PAR6 RNA interference. Carbenoxolone (CBX, a known blocker of gap junctions) inhibited the expression of PAR6 in germ cells and the formation of follicles. Our results suggest that PAR6 could be used as a potential marker of germ cells for the primordial follicle formation, and the expression of PAR6 by a gap junction-dependent process may contribute to the formation of primordial follicles and the maintenance of oocytes at the diplotene stage

    Ras GTPase-like protein MglA, a controller of bacterial social-motility in Myxobacteria, has evolved to control bacterial predation by Bdellovibrio

    Get PDF
    Bdellovibrio bacteriovorus invade Gram-negative bacteria in a predatory process requiring Type IV pili (T4P) at a single invasive pole, and also glide on surfaces to locate prey. Ras-like G-protein MglA, working with MglB and RomR in the deltaproteobacterium Myxococcus xanthus, regulates adventurous gliding and T4P-mediated social motility at both M. xanthus cell poles. Our bioinformatic analyses suggested that the GTPase activating protein (GAP)-encoding gene mglB was lost in Bdellovibrio, but critical residues for MglABd GTP-binding are conserved. Deletion of mglABd abolished prey-invasion, but not gliding, and reduced T4P formation. MglABd interacted with a previously uncharacterised tetratricopeptide repeat (TPR) domain protein Bd2492, which we show localises at the single invasive pole and is required for predation. Bd2492 and RomR also interacted with cyclic-di-GMP-binding receptor CdgA, required for rapid prey-invasion. Bd2492, RomRBd and CdgA localize to the invasive pole and may facilitate MglA-docking. Bd2492 was encoded from an operon encoding a TamAB-like secretion system. The TamA protein and RomR were found, by gene deletion tests, to be essential for viability in both predatory and non-predatory modes. Control proteins, which regulate bipolar T4P-mediated social motility in swarming groups of deltaproteobacteria, have adapted in evolution to regulate the anti-social process of unipolar prey-invasion in the “lone-hunter” Bdellovibrio. Thus GTP-binding proteins and cyclic-di-GMP inputs combine at a regulatory hub, turning on prey-invasion and allowing invasion and killing of bacterial pathogens and consequent predatory growth of Bdellovibrio

    Mathematical modeling of the dynamic storage of iron in ferritin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Iron is essential for the maintenance of basic cellular processes. In the regulation of its cellular levels, ferritin acts as the main intracellular iron storage protein. In this work we present a mathematical model for the dynamics of iron storage in ferritin during the process of intestinal iron absorption. A set of differential equations were established considering kinetic expressions for the main reactions and mass balances for ferritin, iron and a discrete population of ferritin species defined by their respective iron content.</p> <p>Results</p> <p>Simulation results showing the evolution of ferritin iron content following a pulse of iron were compared with experimental data for ferritin iron distribution obtained with purified ferritin incubated <it>in vitro </it>with different iron levels. Distinctive features observed experimentally were successfully captured by the model, namely the distribution pattern of iron into ferritin protein nanocages with different iron content and the role of ferritin as a controller of the cytosolic labile iron pool (cLIP). Ferritin stabilizes the cLIP for a wide range of total intracellular iron concentrations, but the model predicts an exponential increment of the cLIP at an iron content > 2,500 Fe/ferritin protein cage, when the storage capacity of ferritin is exceeded.</p> <p>Conclusions</p> <p>The results presented support the role of ferritin as an iron buffer in a cellular system. Moreover, the model predicts desirable characteristics for a buffer protein such as effective removal of excess iron, which keeps intracellular cLIP levels approximately constant even when large perturbations are introduced, and a freely available source of iron under iron starvation. In addition, the simulated dynamics of the iron removal process are extremely fast, with ferritin acting as a first defense against dangerous iron fluctuations and providing the time required by the cell to activate slower transcriptional regulation mechanisms and adapt to iron stress conditions. In summary, the model captures the complexity of the iron-ferritin equilibrium, and can be used for further theoretical exploration of the role of ferritin in the regulation of intracellular labile iron levels and, in particular, as a relevant regulator of transepithelial iron transport during the process of intestinal iron absorption.</p

    Dysregulation of Cell Polarity Proteins Synergize with Oncogenes or the Microenvironment to Induce Invasive Behavior in Epithelial Cells

    Get PDF
    Changes in expression and localization of proteins that regulate cell and tissue polarity are frequently observed in carcinoma. However, the mechanisms by which changes in cell polarity proteins regulate carcinoma progression are not well understood. Here, we report that loss of polarity protein expression in epithelial cells primes them for cooperation with oncogenes or changes in tissue microenvironment to promote invasive behavior. Activation of ErbB2 in cells lacking the polarity regulators Scribble, Dlg1 or AF-6, induced invasive properties. This cooperation required the ability of ErbB2 to regulate the Par6/aPKC polarity complex. Inhibition of the ErbB2-Par6 pathway was sufficient to block ErbB2-induced invasion suggesting that two polarity hits may be needed for ErbB2 to promote invasion. Interestingly, in the absence of ErbB2 activation, either a combined loss of two polarity proteins, or exposure of cells lacking one polarity protein to cytokines IL-6 or TNFα induced invasive behavior in epithelial cells. We observed the invasive behavior only when cells were plated on a stiff matrix (Matrigel/Collagen-1) and not when plated on a soft matrix (Matrigel alone). Cells lacking two polarity proteins upregulated expression of EGFR and activated Akt. Inhibition of Akt activity blocked the invasive behavior identifying a mechanism by which loss of polarity promotes invasion of epithelial cells. Thus, we demonstrate that loss of polarity proteins confers phenotypic plasticity to epithelial cells such that they display normal behavior under normal culture conditions but display aggressive behavior in response to activation of oncogenes or exposure to cytokines

    Active nuclear import and cytoplasmic retention of activation-induced deaminase

    Full text link
    The enzyme activation-induced deaminase (AID) triggers antibody diversification in B cells by catalyzing deamination and consequently mutation of immunoglobulin genes. To minimize off-target deamination, AID is restrained by several regulatory mechanisms including nuclear exclusion, thought to be mediated exclusively by active nuclear export. Here we identify two other mechanisms involved in controlling AID subcellular localization. AID is unable to passively diffuse into the nucleus, despite its small size, and its nuclear entry requires active import mediated by a conformational nuclear localization signal. We also identify in its C terminus a determinant for AID cytoplasmic retention, which hampers diffusion to the nucleus, competes with nuclear import and is crucial for maintaining the predominantly cytoplasmic localization of AID in steady-state conditions. Blocking nuclear import alters the balance between these processes in favor of cytoplasmic retention, resulting in reduced isotype class switching.This work was supported by the Canadian Institutes of Health Research (MOP 84543) and a Canada Research Chair (to J.M.D.). A.O. was supported by a fellowship from the Canadian Institutes of Health Research Cancer Training Program at the IRCM. V.A.C. was supported in part by a Michel Saucier fellowship from the Louis-Pasteur Canadian Fund through the University of Montreal
    corecore