10 research outputs found

    Urban community gardeners' knowledge and perceptions of soil contaminant risks

    Get PDF
    Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether

    A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk

    Get PDF
    We review the evolution, state of the art and future lines of research on the sources, transport pathways, and sinks of particulate trace elements in urban terrestrial environments to include the atmosphere, soils, and street and indoor dusts. Such studies reveal reductions in the emissions of some elements of historical concern such as Pb, with interest consequently focusing on other toxic trace elements such as As, Cd, Hg, Zn, and Cu. While establishment of levels of these elements is important in assessing the potential impacts of human society on the urban environment, it is also necessary to apply this knowledge in conjunction with information on the toxicity of those trace elements and the degree of exposure of human receptors to an assessment of whether such contamination represents a real risk to the city’s inhabitants and therefore how this risk can be addressed

    Major inputs and mobility of potentially toxic elements contamination in urban areas

    No full text
    Soil quality in urban areas is affected by anthropogenic activities, posing a risk to human health and ecosystems. Since the pseudo-total concentrations of potentially toxic elements may not reflect their potential risks, the study of element mobility is very important on a risk assessment basis. This study aims at characterising the distribution and major sources of 34 elements in two Portuguese urban areas (Lisbon and Viseu), with different geological characteristics, industrial and urban development processes. Furthermore, the potential availability of As, Co, Cr, Cu, Ni, Pb and Zn was assessed, by measuring the fraction easily mobilised. Lisbon is enriched in elements of geogenic and anthropogenic origin, whereas in the smaller city, the high levels observed are mainly related to a geogenic origin. Background values can be more relevant than the dimension of the city, even when anthropogenic components may be present, and this parameter should be considered when comparing results from different cities. Regarding the potential available fraction, a high variability of results was observed for elements and for sampling sites with an influence of the soil's general characteristics. Elements showing very high concentrations due to geological reasons presented, in general, a low mobility and it was not dependent on the degree of contamination. For elements with major anthropogenic origin, only Zn was dependent on the pseudo-total content. Yet, the highest available fractions of some elements, both with major geogenic and anthropogenic origin, were observed in specific contaminated samples. Therefore, a site-specific evaluation in urban soils is important due to the high spatial variability and heterogeneity.This work was supported by CESAM and by the Fundação para a CiĂȘncia e Tecnologia through the research project POCTI/CTA/44851/2002:SOLURB (‘Towards a methodology for the assessment of environmental quality in urban soils’) and individual research grants attributed to A. Cachada (SFRH/BD/38418/2007), P. Pato (SFRH/BPD/35068/ 2007), C. Mieiro (SFRH/BD/28733/2006) and T. Rocha-Santos (SFRH/BPD/65410/2009). The authors wish to thank Pedro Faria for the English revisions.publishe

    Potentially Harmful Elements in Urban Soils

    No full text
    corecore