2,226 research outputs found

    Brownian Carnot engine

    Get PDF
    The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors and some artificial micro-engines operate. As described by stochastic thermodynamics, energy transfers in microscopic systems are random and thermal fluctuations induce transient decreases of entropy, allowing for possible violations of the Carnot limit. Despite its potential relevance for the development of a thermodynamics of small systems, an experimental study of microscopic Carnot engines is still lacking. Here we report on an experimental realization of a Carnot engine with a single optically trapped Brownian particle as working substance. We present an exhaustive study of the energetics of the engine and analyze the fluctuations of the finite-time efficiency, showing that the Carnot bound can be surpassed for a small number of non-equilibrium cycles. As its macroscopic counterpart, the energetics of our Carnot device exhibits basic properties that one would expect to observe in any microscopic energy transducer operating with baths at different temperatures. Our results characterize the sources of irreversibility in the engine and the statistical properties of the efficiency -an insight that could inspire novel strategies in the design of efficient nano-motors.Comment: 7 pages, 7 figure

    Association between the plasma/whole blood lead ratio and history of spontaneous abortion: a nested cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood lead has been associated with an elevated risk of miscarriage. The plasmatic fraction of lead represents the toxicologically active fraction of lead. Women with a tendency to have a higher plasma/whole blood Pb ratio could tend towards an elevated risk of miscarriage due to a higher plasma Pb for a given whole blood Pb and would consequently have a history of spontaneous abortion.</p> <p>Methods</p> <p>We studied 207 pregnant Mexico City residents during the 1<sup>st </sup>trimester of pregnancy, originally recruited for two cohorts between 1997 and 2004. Criteria for inclusion in this study were having had at least one previous pregnancy, and having valid plasma and blood Pb measurements. Pb was measured in whole blood and plasma by inductively coupled plasma mass spectrometry using ultra-clean techniques. History of miscarriage in previous pregnancies was obtained by interview. The incidence rate of spontaneous abortion was defined as the proportion of previous pregnancies that resulted in miscarriage. Data were analyzed by means of Poisson regression models featuring the incidence rate of spontaneous abortion as the outcome and continuous or categorized plasma/blood Pb ratios as predictor variables. All models were adjusted for age and schooling. Additionally, logistic regression models featuring inclusion in the study sample as the outcome were fitted to assess potential selection bias.</p> <p>Results</p> <p>The mean number of miscarriages was 0.42 (range 0 to 4); mean Pb concentrations were 62.4 and 0.14 μg/L in whole blood and plasma respectively. Mean plasma/blood Pb ratio was 0.22%. We estimated that a 0.1% increment in the plasma/blood Pb ratio lead was associated to a 12% greater incidence of spontaneous abortion (p = 0.02). Women in the upper tertile of the plasma/blood Pb ratio had twice the incidence rate of those in the lower tertile (p = 0.02). Conditional on recruitment cohort, inclusion in the study sample was unrelated to observable characteristics such as number of abortions, number of pregnancies, blood Pb levels, age schooling, weight and height.</p> <p>Conclusion</p> <p>Women with a large plasma/whole blood Pb ratio may be at higher risk of miscarriage, which could be due to a greater availability of placental barrier-crossing Pb.</p

    Characterization of Engineered Actin Binding Proteins That Control Filament Assembly and Structure

    Get PDF
    Eukaryotic cells strictly regulate the structure and assembly of their actin filament networks in response to various stimuli. The actin binding proteins that control filament assembly are therefore attractive targets for those who wish to reorganize actin filaments and reengineer the cytoskeleton. Unfortunately, the naturally occurring actin binding proteins include only a limited set of pointed-end cappers, or proteins that will block polymerization from the slow-growing end of actin filaments. Of the few that are known, most are part of large multimeric complexes that are challenging to manipulate.We describe here the use of phage display mutagenesis to generate of a new class of binding protein that can be targeted to the pointed-end of actin. These proteins, called synthetic antigen binders (sABs), are based on an antibody-like scaffold where sequence diversity is introduced into the binding loops using a novel "reduced genetic code" phage display library. We describe effective strategies to select and screen for sABs that ensure the generated sABs bind to the pointed-end surface of actin exclusively.From our set of pointed-end binders, we identify three sABs with particularly useful properties to systematically probe actin dynamics: one protein that caps the pointed end, a second that crosslinks actin filaments, and a third that severs actin filaments and promotes disassembly

    Fully spray-coated triple-cation perovskite solar cells

    Get PDF
    We use ultrasonic spray-coating to sequentially deposit thin films of tin oxide, a triple-cation perovskite and spiro-OMeTAD, allowing us fabricate perovskite solar cells (PSCs) with a champion reverse scan power conversion efficiency (PCE) of 19.4% on small-area substrates. We show that the use of spray-deposition permits us to rapidly (>80 mm s−1) coat 25 mm × 75 mm substrates that were divided into a series of devices each with an active area of 15.4 mm2, yielding an average PCE of 10.3% and a peak PCE of 16.3%. By connecting seven 15.4 mm2 devices in parallel on a single substrate, we create a device having an effective active area of 1.08 cm2 and a PCE of 12.7%. This work demonstrates the possibility for spray-coating to fabricate high efficiency and low-cost perovskite solar cells at speed

    Impact of Tumor Grade on Prognosis in Pancreatic Cancer: Should We Include Grade in AJCC Staging?

    Get PDF
    AJCC staging of pancreatic cancer (PAC) is used to determine prognosis, yet survival within each stage shows wide variation and remains unpredictable. We hypothesized that tumor grade might be responsible for some of this variation and that the addition of grade to current AJCC staging would provide improved prognostication. The Surveillance, Epidemiology, and End Results (SEER) database (1991–2005) was used to identify 8082 patients with resected PAC. The impact of grade on overall and stage-specific survival was assessed using Cox regression analysis. Variables in the model were age, sex, tumor size, lymph node status, and tumor grade. For each AJCC stage, survival was significantly worse for high-grade versus low-grade tumors. On multivariate analysis, high tumor grade was an independent predictor of survival for the entire cohort (hazard ratio [HR] 1.40, 95% confidence interval [95% CI] 1.31–1.48) as well as for stage I (HR 1.28, 95% CI 1.07–1.54), stage IIA (HR 1.43, 95% CI 1.26–1.61), stage IIB (HR 1.38, 95% CI 1.27–1.50), stage III (HR 1.28, 95% CI 1.02–1.59), and stage IV (HR 1.58, 95% CI 1.21–2.05) patients. The addition of grade to staging results in a statistically significant survival discrimination between all stages. Tumor grade is an important prognostic variable of survival in PAC. We propose a novel staging system incorporating grade into current AJCC staging for pancreas cancer. The improved prognostication is more reflective of tumor biology and may impact therapy decisions and stratification of future clinical trials

    The same frequency of planets inside and outside open clusters of stars

    Get PDF
    Most stars and their planets form in open clusters. Over 95 per cent of such clusters have stellar densities too low (less than a hundred stars per cubic parsec) to withstand internal and external dynamical stresses and fall apart within a few hundred million years. Older open clusters have survived by virtue of being richer and denser in stars (1,000 to 10,000 per cubic parsec) when they formed. Such clusters represent a stellar environment very different from the birthplace of the Sun and other planet-hosting field stars. So far more than 800 planets have been found around Sun-like stars in the field. The field planets are usually the size of Neptune or smaller. In contrast, only four planets have been found orbiting stars in open clusters, all with masses similar to or greater than that of Jupiter. Here we report observations of the transits of two Sun-like stars by planets smaller than Neptune in the billion-year-old open cluster NGC6811. This demonstrates that small planets can form and survive in a dense cluster environment, and implies that the frequency and properties of planets in open clusters are consistent with those of planets around field stars in the Galaxy.Comment: 18 pages, 6 figures, 1 table (main text + supplementary information

    Reported reasons for not using a mosquito net when one is available: a review of the published literature

    Get PDF
    Background: A review of the barriers to mosquito net use in malaria-endemic countries has yet to be presented in the published literature despite considerable research interest in this area. This paper partly addresses this gap by reviewing one component of the evidence base; namely, published research pertaining to self-reported reasons for not using a mosquito net among net 'owning' individuals. It was anticipated that the review findings would potentially inform an intervention or range of interventions best suited to promoting greater net use amongst this group. Method. Studies were sought via a search of the Medline database. The key inclusion criteria were: that study participants could be identified as owning a mosquito net or having a mosquito net available for use; that these participants on one or more occasions were identified or self-reported as not using the mosquito net; and that reasons for not using the mosquito net were reported. Studies meeting these criteria were included irrespective of mosquito net type. Results: A total of 22 studies met the inclusion criteria. Discomfort, primarily due to heat, and perceived (low) mosquito density were the most widely identified reason for non-use. Social factors, such as sleeping elsewhere, or not sleeping at all, were also reported across studies as were technical factors related to mosquito net use (i.e. not being able to hang a mosquito net or finding it inconvenient to hang) and the temporary unavailability of a normally available mosquito net (primarily due to someone else using it). However, confidence in the reported findings was substantially undermined by a range of methodological limitations and a dearth of dedicated research investigation. Conclusions: The findings of this review should be considered highly tentative until such time as greater quantities of dedicated, well-designed and reported studies are available in the published literature. The current evidence-base is not sufficient in scope or quality to reliably inform mosquito net promoting interventions or campaigns targeted at individuals who own, but do not (reliably) use, mosquito nets

    Designing a workplace return-to-work program for occupational low back pain: an intervention mapping approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite over 2 decades of research, the ability to prevent work-related low back pain (LBP) and disability remains elusive. Recent research suggests that interventions that are focused at the workplace and incorporate the principals of <it>participatory ergonomics </it>and return-to-work (RTW) coordination can improve RTW and reduce disability following a work-related back injury. Workplace interventions or programs to improve RTW are difficult to design and implement given the various individuals and environments involved, each with their own unique circumstances. Intervention mapping provides a framework for designing and implementing complex interventions or programs. The objective of this study is to design a best evidence RTW program for occupational LBP tailored to the Ontario setting using an intervention mapping approach.</p> <p>Methods</p> <p>We used a qualitative synthesis based on the intervention mapping methodology. Best evidence from systematic reviews, practice guidelines and key articles on the prognosis and management of LBP and improving RTW was combined with theoretical models for managing LBP and changing behaviour. This was then systematically operationalized into a RTW program using consensus among experts and stakeholders. The RTW Program was further refined following feedback from nine focus groups with various stakeholders.</p> <p>Results</p> <p>A detailed five step RTW program was developed. The key features of the program include; having trained personnel coordinate the RTW process, identifying and ranking barriers and solutions to RTW from the perspective of all important stakeholders, mediating practical solutions at the workplace and, empowering the injured worker in RTW decision-making.</p> <p>Conclusion</p> <p>Intervention mapping provided a useful framework to develop a comprehensive RTW program tailored to the Ontario setting.</p

    Warm Water and Cool Nests Are Best. How Global Warming Might Influence Hatchling Green Turtle Swimming Performance

    Get PDF
    For sea turtles nesting on beaches surrounded by coral reefs, the most important element of hatchling recruitment is escaping predation by fish as they swim across the fringing reef, and as a consequence hatchlings that minimize their exposure to fish predation by minimizing the time spent crossing the fringing reef have a greater chance of surviving the reef crossing. One way to decrease the time required to cross the fringing reef is to maximize swimming speed. We found that both water temperature and nest temperature influence swimming performance of hatchling green turtles, but in opposite directions. Warm water increases swimming ability, with hatchling turtles swimming in warm water having a faster stroke rate, while an increase in nest temperature decreases swimming ability with hatchlings from warm nests producing less thrust per stroke

    Search for the standard model Higgs boson at LEP

    Get PDF
    corecore