60 research outputs found

    Prophylactic Glycine Administration Attenuates Pancreatic Damage and Inflammation in Experimental Acute Pancreatitis

    Get PDF
    Background/Aims: Acute pancreatitis (AP) is characterized by premature zymogen activation, systemic inflammatory response resulting in inflammatory infiltrates, sustained intracellular calcium, neurogenic inflammation and pain. The inhibitory neurotransmitter and cytoprotective amino acid glycine exerts a direct inhibitory effect on inflammatory cells, inhibits calcium influx and neuronal activation and therefore represents a putative therapeutic agent in AP. Methods: To explore the impact of glycine, mild AP was induced in rats by supramaximal cerulein stimulation (10 µg/kg BW/h) and severe AP by retrograde injection of sodium taurocholate solution (3%) into the common biliopancreatic duct. 100/300 mmol glycine was administered intravenously before induction of AP. To elucidate the effect of glycine on AP, we determined pathomorphology, pancreatic cytokines as well as proteases, serum lipase and amylase, pancreatic and lung MPO activity and pain sensation. Results: Glycine administration resulted in a noticeable improvement of pathomorphological alterations in AP, such as a reduction of necrosis, inflammatory infiltrates and cytoplasmic vacuoles in cerulein pancreatitis. In taurocholate pancreatitis, glycine additionally diminished pancreatic cytokines and MPO activity, as well as serum lipase and amylase levels. Conclusions: Glycine reduced the severity of mild and much more of severe AP by attenuating the intrapancreatic and systemic inflammatory response. Therefore, glycine seems to be a promising tool for prophylactic treatment of AP

    Impact of clinical phenotypes on management and outcomes in European atrial fibrillation patients: a report from the ESC-EHRA EURObservational Research Programme in AF (EORP-AF) General Long-Term Registry

    Get PDF
    Background: Epidemiological studies in atrial fibrillation (AF) illustrate that clinical complexity increase the risk of major adverse outcomes. We aimed to describe European AF patients\u2019 clinical phenotypes and analyse the differential clinical course. Methods: We performed a hierarchical cluster analysis based on Ward\u2019s Method and Squared Euclidean Distance using 22 clinical binary variables, identifying the optimal number of clusters. We investigated differences in clinical management, use of healthcare resources and outcomes in a cohort of European AF patients from a Europe-wide observational registry. Results: A total of 9363 were available for this analysis. We identified three clusters: Cluster 1 (n = 3634; 38.8%) characterized by older patients and prevalent non-cardiac comorbidities; Cluster 2 (n = 2774; 29.6%) characterized by younger patients with low prevalence of comorbidities; Cluster 3 (n = 2955;31.6%) characterized by patients\u2019 prevalent cardiovascular risk factors/comorbidities. Over a mean follow-up of 22.5 months, Cluster 3 had the highest rate of cardiovascular events, all-cause death, and the composite outcome (combining the previous two) compared to Cluster 1 and Cluster 2 (all P <.001). An adjusted Cox regression showed that compared to Cluster 2, Cluster 3 (hazard ratio (HR) 2.87, 95% confidence interval (CI) 2.27\u20133.62; HR 3.42, 95%CI 2.72\u20134.31; HR 2.79, 95%CI 2.32\u20133.35), and Cluster 1 (HR 1.88, 95%CI 1.48\u20132.38; HR 2.50, 95%CI 1.98\u20133.15; HR 2.09, 95%CI 1.74\u20132.51) reported a higher risk for the three outcomes respectively. Conclusions: In European AF patients, three main clusters were identified, differentiated by differential presence of comorbidities. Both non-cardiac and cardiac comorbidities clusters were found to be associated with an increased risk of major adverse outcomes

    Book Reviews

    Full text link

    A simulation model of urban growth driven by the bosphorus bridges

    No full text
    Springer Berlin Heidelberg12 May 2013 through 15 May 2013 -- -- 199699Istanbul, which joins Asia and Europe, has always attracted attention thanks to its cultural, natural, and environmental heritages. However, an increase in population has caused an enormous transportation problem. To overcome this problem, two bridges were built on the Bosphorus strait, and a third bridge will be built on the north side of the Bosphorus. Shortly after the first two bridges were built, each bridge created its own traffic and triggered urbanization northward into Istanbul. The main purposes of this chapter are to determine land use changes driven by the Bosphorus bridges, as well as the probable impact of a third bridge on land usage. For these purposes, an urban growth simulation model was created for the year 2030, using a SLEUTH-based urban growth model. According to the results, Istanbul will continue growing northward. In the north of the city, 40% of forest areas and 83% of agriculture-urban open space will transform into settlement areas. © Springer-Verlag Berlin Heidelberg 2014.Ayazli, I.E.; Department of Geomatic Engineering, Cumhuriyet UniversityTurkey; email: [email protected]
    corecore