11 research outputs found
Screened Coulomb interactions in metallic alloys: I. Universal screening in the atomic sphere approximation
We have used the locally self-consistent Green's function (LSGF) method in
supercell calculations to establish the distribution of the net charges
assigned to the atomic spheres of the alloy components in metallic alloys with
different compositions and degrees of order. This allows us to determine the
Madelung potential energy of a random alloy in the single-site mean field
approximation which makes the conventional single-site density-functional-
theory coherent potential approximation (SS-DFT-CPA) method practically
identical to the supercell LSGF method with a single-site local interaction
zone that yields an exact solution of the DFT problem. We demonstrate that the
basic mechanism which governs the charge distribution is the screening of the
net charges of the alloy components that makes the direct Coulomb interactions
short-ranged. In the atomic sphere approximation, this screening appears to be
almost independent of the alloy composition, lattice spacing, and crystal
structure. A formalism which allows a consistent treatment of the screened
Coulomb interactions within the single-site mean-filed approximation is
outlined. We also derive the contribution of the screened Coulomb interactions
to the S2 formalism and the generalized perturbation method.Comment: 28 pages, 8 figure
Cutaneous barrier leakage and gut inflammation drive skin disease in Omenn syndrome
Background: Severe early-onset erythroderma and gut inflammation, with massive tissue infiltration of oligoclonal activated T cells are the hallmark of Omenn syndrome (OS). Objective: The impact of altered gut homeostasis in the cutaneous manifestations of OS remains to be clarified. Methods: We analyzed a cohort of 15 patients with OS and the 129Sv/C57BL/6 knock-in Rag2R229Q/R229Q (Rag2R229Q) mouse model. Homing phenotypes of circulating lymphocytes were analyzed by flow cytometry. Inflammatory cytokines and chemokines were examined in the sera by ELISA and in skin biopsies by immunohistochemistry and in situ RNA hybridization. Experimental colitis was induced in mice by dextran sulfate sodium salt. Results: We show that memory/activated T cells from patients with OS and from the Rag2R229Q mouse model of OS abundantly express the skin homing receptors cutaneous lymphocyte associated antigen and CCR4 (Ccr4), associated with high levels of chemokine C-C motif ligands 17 and 22. Serum levels of LPS are also elevated. A broad TH1/TH2/TH17 inflammatory signature is detected in the periphery and in the skin. Increased Tlr4 expression in the skin of Rag2R229Q mice is associated with enhanced cutaneous inflammation on local and systemic administration of LPS. Likewise, boosting colitis in Rag2R229Q mice results in increased frequency of Ccr4+ splenic T cells and worsening of skin inflammation, as indicated by epidermal thickening, enhanced epithelial cell activation, and dermal infiltration by TH1 effector T cells. Conclusions: These results support the existence of an interplay between gut and skin that can sustain skin inflammation in OS
The Public Repository of Xenografts enables discovery and randomized phase II-like trials in mice
More than 90% of drugs with preclinical activity fail in human trials, largely due to insufficient efficacy. We hypothesized that adequately powered trials of patient-derived xenografts (PDX) in mice could efficiently define therapeutic activity across heterogeneous tumors. To address this hypothesis, we established a large, publicly available repository of well-characterized leukemia and lymphoma PDXs that undergo orthotopic engraftment, called the Public Repository of Xenografts (PRoXe). PRoXe includes all de-identified information relevant to the primary specimens and the PDXs derived from them. Using this repository, we demonstrate that large studies of acute leukemia PDXs that mimic human randomized clinical trials can characterize drug efficacy and generate transcriptional, functional, and proteomic biomarkers in both treatment-naive and relapsed/refractory disease
Subepicardial action potential characteristics are a function of depth and activation sequence in isolated rabbit hearts
<p>Background—Electric excitability in the ventricular wall is influenced by cellular electrophysiology and passive electric properties of the myocardium. Action potential (AP) rise time, an indicator of myocardial excitability, is influenced by conduction pattern and distance from the epicardial surface. This study examined AP rise times and conduction velocity as the depolarizing wavefront approaches the epicardial surface.</p>
<p>Methods and Results—Two-photon excitation of di-4-aminonaphthenyl-pyridinum-propylsulfonate was used to measure electric activity at discrete epicardial layers of isolated Langendorff-perfused rabbit hearts to a depth of 500 μm. Endo-to-epicardial wavefronts were studied during right atrial or ventricular endocardial pacing. Similar measurements were made with epi-to-endocardial, transverse, and longitudinal pacing protocols. Results were compared with data from a bidomain model of 3-dimensional (3D) electric propagation within ventricular myocardium. During right atrial and endocardial pacing, AP rise time (10%–90% of upstroke) decreased by ≈50% between 500 and 50 μm from the epicardial surface, whereas conduction velocity increased and AP duration was only slightly shorter (≈4%). These differences were not observed with other conduction patterns. The depth-dependent changes in rise time were larger at higher pacing rates. Modeling data qualitatively reproduced the behavior seen experimentally and demonstrated a parallel reduction in peak INa and electrotonic load as the wavefront approaches the epicardial surface.</p>
<p>Conclusions—Decreased electrotonic load at the epicardial surface results in more rapid AP upstrokes and higher conduction velocities compared with the bulk myocardium. Combined effects of tissue depth and pacing rate on AP rise time reduce conduction safety and myocardial excitability within the ventricular wall.</p>
Pharmacological immunomodulation enhances peripheral nerve regeneration Imunomodulação farmacológica aumenta a regeneração de nervos periféricos
To assess the effect of N-Acetylmuramyl-L-Alanyl-D-Isoglutamine MDP topically administrated on the regenerating peripheral neurons, twelve male C57BL/6J adult mice were equally distributed into three groups. Four mice underwent unilateral sciatic nerve transection and polyethylene tubulization, with a 4mm gap between the proximal and distal nerve stumps and were implanted with collagen + PBS (COL). Other four animals underwent the same surgical procedure but received collagen + MDP (COL/MDP) inside the prosthesis. Four animals were not operated and served as control group (NOR). After 4 weeks, the regenerated nerve cables were processed for total myelinated axon counting and myelinated fiber diameter measurement. The L5 dorsal root ganglion (DRG) was also removed and sectioned for sensory neurons counting and measurement. The results revealed significant difference (p<0.05) in axonal counting among the groups NOR (4,355±32), COL (1,869±289) and COL/MDP (2,430±223). There was a significant reduction in the axonal diameter in the operated groups (COL=3.38µm±1.16 and COL/MDP=3.54µm±1.16) compared to NOR (6.19µm±2.45). No difference was found in the number of DRG neurons between the experimental groups (COL=564±51; COL/MDP=514±56), which presented fewer sensory neurons compared to NOR (1,097±142). Data obtained indicate that locally applied MDP stimulates peripheral nerve regeneration in mice.<br>Para avaliar o efeito do NAcetilmuramil- L-Alanil-D-Isoglutamina administrado topicamente em neurônios periféricos em regeneração, doze camundongos C57BL/6J machos adultos foram igualmente separados em três grupos. Quatro animais sofreram transecção unilateral do nervo ciático que foi ancorado no interior de um tubo de polietileno, mantendo-se 4 mm de distância entre as extremidades dos nervos e receberam colágeno + PBS (COL) dentro do tubo. Outros quatro animais sofreram o mesmo procedimento cirúrgico, porém receberam colágeno + MDP (COL/MDP) no interior da prótese. Quatro animais não foram operados e serviram como controle de normalidade (NOR). Após quatro semanas, os cabos de regeneração foram coletados para determinação do número de axônios mielÃnicos e da mêdia do diâmetro das fibras mielÃnicas regeneradas. O gânglio da raiz dorsal L5 também foi coletado para contagem e mensuração dos neurônios sensitivos. Os resultados revelaram diferença significativa no número de axônios entre os grupos NOR (4355±32), COL (1869±289) e COL/MDP (2430±223). Houve redução significativa no diâmetro das fibras mielÃnicas nos grupos que receberam as próteses tubulares (COL=3,38µm±1,16 e COL/ MDP=3,54µm±1,16) quando comparados ao grupo NOR (6,19µm±2,45). O número de neurônios não diferiu entre os grupos experimentais (COL=564±51 e COL/MDP=514±56), os quais apresentaram menor número de neurônios sensitivos em relação ao grupo não operado (NOR=1097±142). Os dados obtidos indicam que a aplicação local do MDP estimula a regeneração de nervos em camundongos