3,830 research outputs found

    Self-consistent Skyrme QRPA for use in axially-symmetric nuclei of arbitrary mass

    Full text link
    We describe a new implementation of the quasiparticle random phase approximation (QRPA) in axially-symmetric deformed nuclei with Skyrme and volume-pairing energy-density functionals. After using a variety of tests to demonstrate the accuracy of the code in ^{24,26}Mg and ^{16}O, we report the first fully self-consistent application of the Skyrme QRPA to a heavy deformed nucleus, calculating strength distributions for several K^pi in ^{172}Yb. We present energy-weighted sums, properties of gamma-vibrational and low-energy K^pi=0^+ states, and the complete isovector E1 strength function. The QRPA calculation reproduces the properties of the low-lying 2^+ states as well or better than it typically does in spherical nuclei.Comment: 5 pages, 6 figure

    Testing 6,8^{6,8}He density distributions by calculations of total reaction cross-sections of 6,8^{6,8}He+28^{28}Si

    Full text link
    Calculations of the 6,8^{6,8}He + 28^{28}Si total reaction cross sections at intermediate energies are performed on the basis of the Glauber-Sitenko microscopic optical-limit model. The target-nucleus density distribution is taken from the electron-nucleus scattering data, and the 6,8^{6,8}He densities are used as they are derived in different models. The results of the calculations are compared with the existing experimental data. The effects of the density tails of the projectile nuclei as well as the role of shell admixtures and short-range correlations are analyzed.Comment: 10 pages, 5 figures. Submitted to the International Journal of Modern Physics

    Density functional theory and Kohn-Sham scheme for self-bound systems

    Full text link
    We demonstrate how the separation of the total energy of a self-bound system into a functional of the internal one-body Fermionic density and a function of an arbitrary wave vector describing the center-of-mass kinetic energy can be used to set-up an "internal" Kohn-Sham scheme.Comment: 6 pages. To be published in Phys. Rev.

    Configuration Mixing within the Energy Density Functional Formalism: Removing Spurious Contributions from Non-Diagonal Energy Kernels

    Full text link
    Multi-reference calculations along the lines of the Generator Coordinate Method or the restoration of broken symmetries within the nuclear Energy Density Functional (EDF) framework are becoming a standard tool in nuclear structure physics. These calculations rely on the extension of a single-reference energy functional, of the Gogny or the Skyrme types, to non-diagonal energy kernels. There is no rigorous constructive framework for this extension so far. The commonly accepted way proceeds by formal analogy with the expressions obtained when applying the generalized Wick theorem to the non-diagonal matrix element of a Hamilton operator between two product states. It is pointed out that this procedure is ill-defined when extended to EDF calculations as the generalized Wick theorem is taken outside of its range of applicability. In particular, such a procedure is responsible for the appearance of spurious divergences and steps in multi-reference EDF energies, as was recently observed in calculations restoring particle number or angular momentum. In the present work, we give a formal analysis of the origin of this problem for calculations with and without pairing, i.e. constructing the density matrices from either Slater determinants or quasi-particle vacua. We propose a correction to energy kernels that removes the divergences and steps, and which is applicable to calculations based on any symmetry restoration or generator coordinate. The method is formally illustrated for particle number restoration and is specified to configuration mixing calculations based on Slater determinants.Comment: 27 pages, 1 figure, accepted for publication in PR

    Exploring continuum structures with a pseudo-state basis

    Get PDF
    The ability of a recently developed square-integrable discrete basis to represent the properties of the continuum of a two-body system is investigated. The basis is obtained performing a simple analytic local scale transformation to the harmonic oscillator basis. Scattering phase-shifts and the electric transition probabilities B(E1) and B(E2) have been evaluated for several potentials using the proposed basis. Both quantities are found to be in excellent agreement with the exact values calculated from the true scattering states. The basis has been applied to describe the projectile continuum in the 6He scattering by 12C and 208Pb targets at 240 MeV/nucleon and the 11Be scattering by 12C at 67 MeV/nucleon. The calculated breakup differential cross sections are found to be in very good agreement with the available experimental data for these reactions.Comment: 17 pages, 10 figures (Version to appear in Phys. Rev. C

    Local structure study of In_xGa_(1-x)As semiconductor alloys using High Energy Synchrotron X-ray Diffraction

    Full text link
    Nearest and higher neighbor distances as well as bond length distributions (static and thermal) of the In_xGa_(1-x)As (0<x<1) semiconductor alloys have been obtained from high real-space resolution atomic pair distribution functions (PDFs). Using this structural information, we modeled the local atomic displacements in In_xGa_(1-x)As alloys. From a supercell model based on the Kirkwood potential, we obtained 3-D As and (In,Ga) ensemble averaged probability distributions. This clearly shows that As atom displacements are highly directional and can be represented as a combination of and displacements. Examination of the Kirkwood model indicates that the standard deviation (sigma) of the static disorder on the (In,Ga) sublattice is around 60% of the value on the As sublattice and the (In,Ga) atomic displacements are much more isotropic than those on the As sublattice. The single crystal diffuse scattering calculated from the Kirkwood model shows that atomic displacements are most strongly correlated along directions.Comment: 10 pages, 12 figure

    Ab initio derivation of model energy density functionals

    Get PDF
    I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results

    Quadrupole deformations of neutron-drip-line nuclei studied within the Skyrme Hartree-Fock-Bogolyubov approach

    Get PDF
    We introduce a local-scaling point transformation to allow for modifying the asymptotic properties of the deformed three-dimensional Cartesian harmonic oscillator wave functions. The resulting single-particle bases are very well suited for solving the Hartree-Fock-Bogoliubov equations for deformed drip-line nuclei. We then present results of self-consistent calculations performed for the Mg isotopes and for light nuclei located near the two-neutron drip line. The results suggest that for all even-even elements with ZZ=10--18 the most weakly-bound nucleus has an oblate ground-state shape.Comment: 20 pages, 7 figure
    corecore