We describe a new implementation of the quasiparticle random phase
approximation (QRPA) in axially-symmetric deformed nuclei with Skyrme and
volume-pairing energy-density functionals. After using a variety of tests to
demonstrate the accuracy of the code in ^{24,26}Mg and ^{16}O, we report the
first fully self-consistent application of the Skyrme QRPA to a heavy deformed
nucleus, calculating strength distributions for several K^pi in ^{172}Yb. We
present energy-weighted sums, properties of gamma-vibrational and low-energy
K^pi=0^+ states, and the complete isovector E1 strength function. The QRPA
calculation reproduces the properties of the low-lying 2^+ states as well or
better than it typically does in spherical nuclei.Comment: 5 pages, 6 figure