1,299 research outputs found
Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction
We investigate the efficiency at maximum power of an irreversible Carnot
engine performing finite-time cycles between two reservoirs at temperatures
and , taking into account of internally dissipative
friction in two "adiabatic" processes. In the frictionless case, the
efficiencies at maximum power output are retrieved to be situated between
and , with being
the Carnot efficiency. The strong limits of the dissipations in the hot and
cold isothermal processes lead to the result that the efficiency at maximum
power output approaches the values of and
, respectively. When dissipations of two isothermal
and two adiabatic processes are symmetric, respectively, the efficiency at
maximum power output is founded to be bounded between 0 and the Curzon-Ahlborn
(CA) efficiency , and the the CA efficiency is achieved in
the absence of internally dissipative friction
Study of the High Energy Cosmic Rays with the Pierre Auger Observatory
The Pierre Auger Southern Observatory, a hybrid detector for the study of ultrahigh energy cosmic rays (UHECRs), has now been operating for more than five years and has reached completion. This contribution describes the present status and performance of the Observatory, showing the advantages provided by the combined use of two different detection techniques. Selected results are presented with the emphasis given to the measurement of energy spectrum, arrival directions at the highest energies and search for photons as primary particles
Efficiency at maximum power of thermally coupled heat engines
We study the efficiency at maximum power of two coupled heat engines, using
thermoelectric generators (TEGs) as engines. Assuming that the heat and
electric charge fluxes in the TEGs are strongly coupled, we simulate
numerically the dependence of the behavior of the global system on the
electrical load resistance of each generator in order to obtain the working
condition that permits maximization of the output power. It turns out that this
condition is not unique. We derive a simple analytic expression giving the
relation between the electrical load resistance of each generator permitting
output power maximization. We then focuse on the efficiency at maximum power
(EMP) of the whole system to demonstrate that the Curzon-Ahlborn efficiency may
not always be recovered: the EMP varies with the specific working conditions of
each generator but remains in the range predicted by irreversible
thermodynamics theory. We finally discuss our results in light of non-ideal
Carnot engine behavior.Comment: 11 pages, 7 figure
Thermodynamic Bounds on Efficiency for Systems with Broken Time-reversal Symmetry
We show that for systems with broken time-reversal symmetry the maximum
efficiency and the efficiency at maximum power are both determined by two
parameters: a "figure of merit" and an asymmetry parameter. In contrast to the
time-symmetric case, the figure of merit is bounded from above; nevertheless
the Carnot efficiency can be reached at lower and lower values of the figure of
merit and far from the so-called strong coupling condition as the asymmetry
parameter increases. Moreover, the Curzon-Ahlborn limit for efficiency at
maximum power can be overcome within linear response. Finally, always within
linear response, it is allowed to have simultaneously Carnot efficiency and
non-zero power.Comment: Final version, 4 pages, 3 figure
Rietveld refinement of the crystal structures of hexagonal Y6Cr4+xAl43−x (x=2.57) and tetragonal YCr4−xAl8+x (x=1.22)
Y6Cr4+xAl43−x (x = 2.57); space group P63/mcm, a = 10.8601(1) Å, c = 17.6783(3) Å, V= 1805.7(1) Å3, Z=2; isostructural to Yb6Cr4+xAl43−x, (x=1.76) with two aluminium sites partially occupied by chromium (44% and 27% Cr). YCr4−xAl8+x (x=1.22); space group I4/mmm, a = 9.0299(2) Å, c = 5.1208(2) Å, V=417.55(3) Å3, Z=2, disordered variant of CeMn4Al8 with one chromium site (8f) partially occupied by aluminium (33% Al); X-ray powder diffraction data were collected on a well-crystallized multiphase sample containing 43 wt.% of Y6Cr4+xAl43−x, 27 wt.% of Y2Cr8−xAl16+x, 16 wt.% of Al, 13 wt.% of YAl3, and traces of Y2O3. Structure refinement converged at Rwp = 2.0% and RB = 3.5, 3.6% resp. for a total of 78 parameters and 1190 reflection
- …