181 research outputs found

    Zn2+-Dependent Histone Deacetylases in Plants: Structure and Evolution

    Get PDF
    Zn2+-dependent histone deacetylases are widely distributed in archaea, bacteria, and eukaryotes. Through deacetylation of histones and other biomolecules, these enzymes regulate mammalian gene expression, microtubule stability, and polyamine metabolism. In plants, they play essential roles in development and stress response, but little is known about their biochemistry. We provide here a holistic revision of plant histone deacetylase (HDA) phylogeny and translate recent lessons from other organisms. HDA evolution correlates with a gain of structural ductility/disorder, as observed for other proteins. We also highlight two recently identified Brassicaceae-specific HDAs, as well as unprecedented key mutations that would affect the catalytic activity of individual HDAs. This revised phylogeny will contextualize future studies and illuminate research on plant development and adaptation

    Evidence for a strong correlation between transcription factor protein disorder and organismic complexity

    Get PDF
    Studies of diverse phylogenetic lineages reveal that protein disorder increases in concert with organismic complexity but that differences nevertheless exist among lineages. To gain insight into this phenomenology, we analyzed all of the transcription factor (TF) families for which sequences are known for 17 species spanning bacteria, yeast, algae, land plants, and animals and for which the number of different cell types has been reported in the primary literature. Although the fraction of disordered residues in TF sequences is often moderately or poorly correlated with organismic complexity as gauged by cell-type number (r20.8). Furthermore, the correlation between the fraction of disordered residues and cell-type number becomes stronger when confined to the TF families participating in cell cycle, cell size, cell division, cell differentiation, or cell proliferation, and other important developmental processes. The data also indicate that evolutionarily simpler organisms allow for the detection of subtle differences in the conserved IDRs of TFs as well as changes in variable IDRs, which can influence the DNA recognition and multifunctionality of TFs through direct or indirect mechanisms. Although strong correlations cannot be taken as evidence for causeand-effect relationships, we interpret our data to indicate that increasing TF disorder likely was an important factor contributing to the evolution of organismic complexity and not merely a concurrent unrelated effect of increasing organismic complexity

    Evolution of Protein Ductility in Duplicated Genes of Plants

    Get PDF
    Previous work has shown that ductile/intrinsically disordered proteins (IDPs) and residues (IDRs) are found in all unicellular and multicellular organisms, wherein they are essential for basic cellular functions and complement the function of rigid proteins. In addition, computational studies of diverse phylogenetic lineages have revealed: (1) that protein ductility increases in concert with organismic complexity, and (2) that distributions of IDPs and IDRs along the chromosomes of plant species are non-random and correlate with variations in the rates of the genetic recombination and chromosomal rearrangement. Here, we show that approximately 50% of aligned residues in paralogs across a spectrum of algae, bryophytes, monocots, and eudicots are IDRs and that a high proportion (ca. 60%) are in disordered segments greater than 30 residues. When three types of IDRs are distinguished (i.e., identical, similar and variable IDRs) we find that species with large numbers of chromosome and endoduplicated genes exhibit paralogous sequences with a higher frequency of identical IDRs, whereas species with small chromosomes numbers exhibit paralogous sequences with a higher frequency of similar and variable IDRs. These results are interpreted to indicate that genome duplication events influence the distribution of IDRs along protein sequences and likely favor the presence of identical IDRs (compared to similar IDRs or variable IDRs). We discuss the evolutionary implications of gene duplication events in the context of ductile/disordered residues and segments, their conservation, and their effects on functionality

    Mining the Flavoproteome of Brucella ovis, the Brucellosis causing agent in Ovis aries

    Get PDF
    Flavoproteins are a diverse class of proteins that are mostly enzymes and contain as cofactors flavin mononucleotide (FMN) and/or flavin adenine dinucleotide (FAD), which enable them to participate in a wide range of physiological reactions. We have compiled 78 potential proteins building the flavoproteome of Brucella ovis (B. ovis), the causative agent of ovine brucellosis. The curated list of flavoproteins here reported is based on (i) the analysis of sequence, structure and function of homologous proteins, and their classification according to their structural domains, clans, and expected enzymatic functions; (ii) the constructed phylogenetic trees of enzyme functional classes using 19 Brucella strains and 26 pathogenic and/or biotechnological relevant alphaproteobacteria together with B. ovis; and (iii) the evaluation of the genetic context for each entry. Candidates account for;2.7% of the B. ovis proteome, and 75% of them use FAD as cofactor. Only 55% of these flavoproteins belong to the core proteome of Brucella and contribute to B. ovis processes involved in maintenance activities, survival and response to stress, virulence, and/or infectivity. Several of the predicted flavoproteins are highly divergent in Brucella genus from revised proteins and for them it is difficult to envisage a clear function. This might indicate modified catalytic activities or even divergent processes and mechanisms still not identified. We have also detected the lack of some functional flavoenzymes in B. ovis, which might contribute to it being nonzoonotic. Finally, potentiality of B. ovis flavoproteome as the source of antimicrobial targets or biocatalyst is discussed. IMPORTANCE Some microorganisms depend heavily on flavin-dependent activities, but others maintain them at a minimum. Knowledge about flavoprotein content and functions in different microorganisms will help to identify their metabolic requirements, as well as to benefit either industry or health. Currently, most flavoproteins from the sheep pathogen Brucella ovis are only automatically annotated in databases, and only two have been experimentally studied. Indeed, certain homologues with unknown function are not characterized, and they might relate to still not identified mechanisms or processes. Our research has identified 78 members that comprise its flavoproteome, 76 of them flavoenzymes, which mainly relate to bacteria survival, virulence, and/or infectivity. The list of flavoproteins here presented allows us to better understand the peculiarities of Brucella ovis and can be applied as a tool to search for candidates as new biocatalyst or antimicrobial targets

    Spin-label EPR study in thylakoid membranes from a new herbicide-resistant D1 mutant from soybean cell cultures deficient in fatty acid desaturation

    Get PDF
    El pdf del artículo es la versión post-print.Fatty acid desaturation effect on the lipid fluidity in thylakoid membranes isolated from the STR7 mutant was investigated by electron paramagnetic resonance (EPR) using spin label probes. The spectra of both 5- and 16-n-doxylstearic acid probes were measured as a function of the temperature between 10-305 K and compared to those of the wild type. This complete thermal evolution provides a wider picture of the dynamics. The spectra of the 5-n-doxylstearic acid probe were identical in both STR7 mutant and wild type thylakoids as well as their temperature evolution. However, differences were found with the 16-n-doxylstearic acid probe at temperatures between 230-305 K. The differences in the thermal evolution of the EPR spectra can be interpreted as a 5-10 K shift toward higher temperatures of the probe motional rates in the STR7 mutant as compared with that in the wild type. At temperatures below 230 K no differences were observed. The results indicated that the lipid motion in the outermost region of the thylakoids is the same in the STR7 mutant than in the wild type while the fluidity in the inner region of the STR7 mutant membrane decreases. Our data point out a picture of the STR7 thylakoid membrane in which the lipid motion is slower most probably as a consequence of fatty acid desaturation deficiency.M.A. and I.G.-R. were recipients of a contract and a fellowship, respectively, from the Ministerio de Educación y Cultura of Spain. This work was supported by the Dirección General de Investigación Científica y Técnica (Grant PB98-1632) and by the Diputación General de Aragón (Project P17/98).Peer reviewe

    Copper effect on the protein composition of photosystem II

    Get PDF
    The definitive version is available at: http://www.blackwell-synergy.com/doi/full/10.1111/j.1399-3054.2000.1100419.xWe provide data from in vitro experiments on the polypeptide composition, photosynthetic electron transport and oxygen evolution activity of intact photosystem II (PSII) preparations under Cu(II) toxicity conditions. Low Cu(II) concentrations (Cu(II) per PSII reaction centre unit≤230) that caused around 50% inhibition of variable chlorophyll a fluorescence and oxygen evolution activity did not affect the polypeptide composition of PSII. However, the extrinsic proteins of 33, 24 and 17 kDa of the oxygen-evolving complex of PSII were removed when samples were treated with 300 μM CuCl2 (Cu(II) per PSII reaction centre unit=1 400). The LHCII antenna complex and D1 protein of the reaction centre of PSII were not affected even at these Cu(II) concentrations. The results indicated that the initial inhibition of the PSII electron transport and oxygen-evolving activity induced by the presence of toxic Cu(II) concentrations occurred before the damage of the oxygen-evolving complex. Indeed, more than 50% inhibition could be achieved in conditions where its protein composition and integrity was apparently preserved.This work was supported by the Dirección General de Investigación Científica y Técnica (Grant PB98-1632).Peer reviewe

    The photosynthetic cytochrome c550 from the diatom Phaeodactylum tricornutum

    Get PDF
    The photosynthetic cytochrome c550 from the marine diatom Phaeodactylum tricornutum has been purified and characterized. Cytochrome c550 is mostly obtained from the soluble cell extract in relatively large amounts. In addition, the protein appeared to be truncated in the last hydrophobic residues of the C-terminus, both in the soluble cytochrome c550 and in the protein extracted from the membrane fraction, as deduced by mass spectrometry analysis and the comparison with the gene sequence. Interestingly, it has been described that the C-terminus of cytochrome c550 forms a hydrophobic finger involved in the interaction with photosystem II in cyanobacteria. Cytochrome c550 was almost absent in solubilized photosystem II complex samples, in contrast with the PsbO and Psb31 extrinsic subunits, thus suggesting a lower affinity of cytochrome c550 for the photosystem II complex. Under iron-limiting conditions the amount of cytochrome c550 decreases up to about 45% as compared to iron-replete cells, pointing to an iron-regulated synthesis. Oxidized cytochrome c550 has been characterized using continuous wave EPR and pulse techniques, including HYSCORE, and the obtained results have been interpreted in terms of the electrostatic charge distribution in the surroundings of the heme centre

    The photosynthetic cytochrome c 550 from the diatom Phaeodactylum tricornutum

    Get PDF
    The photosynthetic cytochrome c550 from the marine diatom Phaeodactylum tricornutum has been purified and characterized. Cytochrome c550 is mostly obtained from the soluble cell extract in relatively large amounts. In addition, the protein appeared to be truncated in the last hydrophobic residues of the C-terminus, both in the soluble cytochrome c550 and in the protein extracted from the membrane fraction, as deduced by mass spectrometry analysis and the comparison with the gene sequence. Interestingly, it has been described that the C-terminus of cytochrome c550 forms a hydrophobic finger involved in the interaction with photosystem II in cyanobacteria. Cytochrome c550 was almost absent in solubilized photosystem II complex samples, in contrast with the PsbO and Psb31 extrinsic subunits, thus suggesting a lower affinity of cytochrome c550 for the photosystem II complex. Under iron-limiting conditions the amount of cytochrome c550 decreases up to about 45% as compared to iron-replete cells, pointing to an iron-regulated synthesis. Oxidized cytochrome c550 has been characterized using continuous wave EPR and pulse techniques, including HYSCORE, and the obtained results have been interpreted in terms of the electrostatic charge distribution in the surroundings of the heme centre.This work was supported by the Spanish Ministry of Economy and Competitiveness (BIO2012-35271, BIO2015-64169-P, MAT2011-23861 and CTQ2015-64486-R) the Andalusian Government (PAIDI BIO-022) and the Aragón Government (Grupo consolidado B-18). All these grants were partially financed by the EU FEDER ProgramPeer reviewe

    Bicarbonate binding to the water-oxidizing complex in the photosystem II. A Fourier transform infrared spectroscopy study1The authors would like to dedicate this paper to the memory of José V. Ibarra.1

    Get PDF
    AbstractThe light-induced Fourier transform infrared difference (FT-IR) spectrum originating from the donor side of O2-evolving photosystem (PS) II was obtained in non-depleted and CO2-depleted PSII membrane preparations. The observed spectrum free of contributions from the acceptor side signals was achieved by employing 2 mM/18 mM ferri-/ferrocyanide as a redox couple. This spectrum showed main positive bands at 1589 and 1365 cm−1 and negative bands at 1560, 1541, 1522 and 1507 cm−1. CO-depleted PSII preparations showed a quite different spectrum. The main positive and negative bands disappeared after depletion of bicarbonate. The addition of bicarbonate partially restored those bands again. Comparison between difference FT-IR spectra of untreated and bicarbonate-depleted PSII membranes indicated that the positive bands at 1589 and 1365 cm−1 can be assigned to COO− stretching modes from bicarbonate. The higher frequency corresponds to uas (COO−) and the lower frequency to us (COO−). 13C-Labeling FT-IR measurements confirmed these findings and also suggested that the negative band at 1560 cm−1 can be ascribed to uas (COO−). The data are discussed in the framework of the suggestion that bicarbonate can be a ligand to the Mn-containing water-oxidizing complex of PSII
    • …
    corecore