865 research outputs found

    Analytical Form of the Deuteron Wave Function Calculated within the Dispersion Approach

    Get PDF
    We present a convenient analytical parametrization of the deuteron wave function calculated within dispersion approach as a discrete superposition of Yukawa-type functions, in both configuration and momentum spaces.Comment: 3 pages, 2 figure; several minor corrections adde

    Deuteron tensor polarization component T_20(Q^2) as a crucial test for deuteron wave functions

    Get PDF
    The deuteron tensor polarization component T_20(Q^2) is calculated by relativistic Hamiltonian dynamics approach. It is shown that in the range of momentum transfers available in to-day experiments, relativistic effects, meson exchange currents and the choice of nucleon electromagnetic form factors almost do not influence the value of T_20(Q^2). At the same time, this value depends strongly on the actual form of the deuteron wave function, that is on the model of NN-interaction in deuteron. So the existing data for T_20(Q^2) provide a crucial test for deuteron wave functions.Comment: 11 pages, 3 figure

    Billiard Representation for Multidimensional Cosmology with Intersecting p-branes near the Singularity

    Get PDF
    Multidimensional model describing the cosmological evolution of n Einstein spaces in the theory with l scalar fields and forms is considered. When electro-magnetic composite p-brane ansatz is adopted, and certain restrictions on the parameters of the model are imposed, the dynamics of the model near the singularity is reduced to a billiard on the (N-1)-dimensional Lobachevsky space, N = n+l. The geometrical criterion for the finiteness of the billiard volume and its compactness is used. This criterion reduces the problem to the problem of illumination of (N-2)-dimensional sphere by point-like sources. Some examples with billiards of finite volume and hence oscillating behaviour near the singularity are considered. Among them examples with square and triangle 2-dimensional billiards (e.g. that of the Bianchi-IX model) and a 4-dimensional billiard in ``truncated'' D = 11 supergravity model (without the Chern-Simons term) are considered. It is shown that the inclusion of the Chern-Simons term destroys the confining of a billiard.Comment: 27 pages Latex, 3 figs., submit. to Class. Quantum Gra

    A note on quantization operators on Nichols algebra model for Schubert calculus on Weyl groups

    Full text link
    We give a description of the (small) quantum cohomology ring of the flag variety as a certain commutative subalgebra in the tensor product of the Nichols algebras. Our main result can be considered as a quantum analog of a result by Y. Bazlov

    Gamma-radiation with E gamma 5 MeV detected from Seyfert galaxy 3C120 and region with 1" = 190 deg and b" = 20 deg

    Get PDF
    The observation of the Galaxy anticenter region in gamma-rays with E gamma = 5 / 100 MeV was made by gamma-telescope Natalya-1 in a balloon flight. The flight was performed at the ceiling 5.1 + or - 0.1 g/sq cm, magnetic cutoff being 17 GV. The description of the instrument and the analysis of the experiment conditions are given. The tracks of electron-positron pairs generated by gamma-quanta in the convertors were detected by wire spark chambers. The recorded events were classified manually by an operator using a graphic display into three classes: pairs, single and bad events. The arrival angle of gamma-quanta and their energy for selected gamma-ray events (pairs and singles) were determined through multiple scattering of pair components in the convertors. On the basis of the data obtained the celestial maps were made in gamma-rays for E sub gamma 5 MeV and E gamma 20 MeV energy ranges

    A Quantum-Classical Brackets from p-Mechanics

    Get PDF
    We provide an answer to the long standing problem of mixing quantum and classical dynamics within a single formalism. The construction is based on p-mechanical derivation (quant-ph/0212101, quant-ph/0304023) of quantum and classical dynamics from the representation theory of the Heisenberg group. To achieve a quantum-classical mixing we take the product of two copies of the Heisenberg group which represent two different Planck's constants. In comparison with earlier guesses our answer contains an extra term of analytical nature, which was not obtained before in purely algebraic setup. Keywords: Moyal brackets, Poisson brackets, commutator, Heisenberg group, orbit method, representation theory, Planck's constant, quantum-classical mixingComment: LaTeX, 7 pages (EPL style), no figures; v2: example of dynamics with two different Planck's constants is added, minor corrections; v3: major revion, a complete example of quantum-classic dynamics is given; v4: few grammatic correction

    On Bohr-Sommerfeld bases

    Full text link
    This paper combines algebraic and Lagrangian geometry to construct a special basis in every space of conformal blocks, the Bohr-Sommerfeld (BS) basis. We use the method of [D. Borthwick, T. Paul and A. Uribe, Legendrian distributions with applications to the non-vanishing of Poincar\'e series of large weight, Invent. math, 122 (1995), 359-402, preprint hep-th/9406036], whereby every vector of a BS basis is defined by some half-weighted Legendrian distribution coming from a Bohr-Sommerfeld fibre of a real polarization of the underlying symplectic manifold. The advantage of BS bases (compared to bases of theta functions in [A. Tyurin, Quantization and ``theta functions'', Jussieu preprint 216 (Apr 1999), e-print math.AG/9904046, 32pp.]) is that we can use information from the skillful analysis of the asymptotics of quantum states. This gives that Bohr-Sommerfeld bases are unitary quasi-classically. Thus we can apply these bases to compare the Hitchin connection with the KZ connection defined by the monodromy of the Knizhnik-Zamolodchikov equation in combinatorial theory (see, for example, [T. Kohno, Topological invariants for 3-manifolds using representations of mapping class group I, Topology 31 (1992), 203-230; II, Contemp. math 175} (1994), 193-217]).Comment: 43 pages, uses: latex2e with amsmath,amsfonts,theore

    Energieverluste durch Bindedrähte in einer Turbinenstufe

    Get PDF
    Der zur Schwingungsdämpfung der Schaufeln eingesetzte Bindedraht vermindert die Leistungsfähigkeit der Turbinenstufe erheblich. Wo man Bindedrähte in zwei oder drei Reihen anbringen muß, kann die Minderung dadurch einige Prozent ausmachen. Die großen Energieverluste aufgrund der Bindedrähte machen ihren Einsatz nicht immer sinnvoll. Die Schweizer Firma Escher Wyss AG setzt sie überhaupt nicht ein, weil sie annimmt, daß die Bindedrähte die Leistungsfähigkeit stark vermindern und in einigen Fällen der Grund dafür sind, daß die nachfolgenden Stufen stärker verschleißen. Deshalb ist die richtige Abschätzung der Energieverluste infolge vorhandener Bindedrähte von großer praktischer Bedeutung. Gleichzeitig sind uns nur wenige Versuche bekannt, die auf die Bestimmung dieser Energieverluste abzielten. Nachfolgend werden einige Versuchsergebnisse dargelegt, die im Transportmaschinenbau-Institut Brjansk durchgeführt wurden

    Geometric phase around exceptional points

    Get PDF
    A wave function picks up, in addition to the dynamic phase, the geometric (Berry) phase when traversing adiabatically a closed cycle in parameter space. We develop a general multidimensional theory of the geometric phase for (double) cycles around exceptional degeneracies in non-Hermitian Hamiltonians. We show that the geometric phase is exactly π\pi for symmetric complex Hamiltonians of arbitrary dimension and for nonsymmetric non-Hermitian Hamiltonians of dimension 2. For nonsymmetric non-Hermitian Hamiltonians of higher dimension, the geometric phase tends to π\pi for small cycles and changes as the cycle size and shape are varied. We find explicitly the leading asymptotic term of this dependence, and describe it in terms of interaction of different energy levels.Comment: 4 pages, 1 figure, with revisions in the introduction and conclusio
    corecore