GAMMA-RADIATION WITH E ${ }_{\gamma}>5$ MEV DETECTED FROM SEYFERT GALAXY $3 C 120$ AND REGION WIMH $I^{\prime \prime}=190^{\circ}$ AND $b^{\prime \prime}=20^{\circ}$

Damle S.V.*, Fradkin M.I.**, Iyudin A.F.***, Kirillov-Ugryumov V.G.***, Kotov Yu.D.***, Kurnosova L.V.**, Smirnov Yu.V.***, Yurov V.N.***

* TATA Institute of Fundamental Research, Bombay, India ** P.N.Lebedev Physical Institute of the. USSR Academy of Sciences, Moscow, USSR
*** Moscow Engineering Physics Institute, Moscow, USSR

The observation of the Galaxy anticentre region in gam-ma-rays with $E_{\gamma}=5 \pm 100 \mathrm{MeV}$ was made by gamma-telescope "Natalya-1" in a balloon flight on 06.11 .80 at 15.00-24.00 UT. The flight was performed at the ceiling $5.1 \pm 0.1 \mathrm{~g} / \mathrm{cm}^{2}$, magnetic cutoff being 17 GV . The description of the instrument and the analysis of the experiment conditions are giyen in $/ 1,2 /$ The region of the sky with coordinates $\alpha=4^{h}+8^{h}$, $\delta=-20^{\circ}+60^{\circ}$ was observed during the flight. The tracks of electron-positron pairs generated by gamma-quanta in the convertors were detected by wire spark chambers. The recorded events were classified manually by an operator using a graphic display into three classes: "pairs", "single" and "bad" events. The arrival ancle of gamma-quanta and their energy for selected gamma-ray events ("pairs" and "singles") were determined through multiple scattering of pair components in the convertors.

On the basis of the data obtained the celestial maps were made in gamma-rays for $E_{\gamma}>5 \mathrm{MeV}$ and $\mathrm{E}_{\boldsymbol{\prime}}>20 \mathrm{MeV}$ energy ranges.

The search for discrete gamma-ray sources was carried out with the use of a cross-correlation method similar to that described in /3/. Cross-correlation maps were plotted for $E \gamma^{>}>5 \mathrm{MeV}$ and $\mathrm{E}_{\gamma}>20 \mathrm{MeV}$. Fig. 1 shows the map for E $\gamma>5 \mathrm{MeV}$. The fluxes of gamma-radiation from the Crab NebuIa source in $5 \div 20$ and $20+100 \mathrm{MeV}$ ranges were obtained on the basis of the determined excess taking into account the instrument efficiency and real time exposure of the source. They were equal to $(2.1 \pm 0.5) \cdot 10^{-5}$ and $(1.0 \pm 0.3) \cdot 10^{-6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ MeV^{-1} respectively $/ 2 /$. The excesses of gamma-radiation with $\mathrm{E}_{\gamma}>5 \mathrm{MeV}$ were also detected from $\alpha=4^{4} 28^{m}, \delta=+60$ region containing 30120 source and from $\alpha=7^{h} 20^{\prime m} \pm 20^{m}$, $\delta=28^{\circ} \pm 5^{\circ}$ region.

The corresponding integral flux for 30120 in $\mathrm{E}_{\gamma}>5 \mathrm{MeV}$ energy range is $(3.6 \pm 1.2) \cdot 10^{-4} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. The cross-correlation

Fig.1. Cross-correlation map of the Galaxy anticentre region for $\mathrm{H}_{\gamma}>5 \mathrm{MeV}$. (The curves correspond to the following intensities: (3.2; 2.9; 2.8; 2.6; $\left.2.4 ; 2.2 ; 2.0 ; 1.8) \cdot 10^{-3} s^{-1}\right)$.

Pig.2. Seyfert Galaxy 30120 ganma-spectrum.
analysis for gamma-quanta with $E_{\gamma}>20 \mathrm{MeV}$ has not revealed any significant radiation excess in this region and the corresponding upper limit of the flux at 90% confidence level is $0.8 \cdot 10^{-4} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. These fluxes are shown in Fig. 2 along with some other experimental data on this subject. The confidence level of the excess existence for the sources mentioned are presented in the rable.

The obtained data make it possible to determine the luminosity in the low-energy range of gamma-quanta. Assuming the spectrum to be power law and taking an upper limit ob-
tained for $E_{\gamma}>20 \mathrm{MeV}$ as the flux at that energy we can have $\alpha=2.5$. The spectrum then will be $J(E)=7 \cdot 10^{-3} \mathrm{E}^{-2,5 \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \text { IReV }}$ and the energy flux in $5 \cdot 20 \mathrm{NeV}$ range is $\mathrm{F}=5 \cdot 10^{-9} \mathrm{erg} / \mathrm{cm} \cdot \boldsymbol{s}$.

Table. Fluxes of different sources in gemma-range detected by gamma-telescope "Natalya-1".

Source	Coordinates		E_{γ}, MeV	Significance	$\stackrel{\text { Finux }}{10^{-4} \mathrm{cn}^{-2} \mathrm{~s}^{-1}}$
	α	δ			
Crab Nebula	$5^{\text {h }} 30^{\text {m }}$	19°	$\begin{aligned} & 5-20 \\ & 20-100 \end{aligned}$	0.999 0.998	3.6 0.9
30120	$4^{\text {h }} 24^{m}$	60	$\begin{aligned} & 5-100 \\ & 20-100 \end{aligned}$	$\begin{aligned} & 0.994 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 0.8 \end{aligned}$
G(190-20)	$7^{\mathrm{h}} 20^{\text {m }}$	28°	$\begin{aligned} & 5-100 \\ & 20-100 \end{aligned}$	$\begin{aligned} & 0.97 \\ & 0.88 \end{aligned}$	4.2 0.9

The corresponding Iuminosity is $\mathrm{I}=2 \cdot 3 \cdot 10^{46} \mathrm{erg} \mathrm{s}^{-1}$ ($Z=0.032, H=50 \mathrm{~km} / \mathrm{s} \mathrm{Mps}, \mathrm{P}=200 \mathrm{Mps}$). Such luminosity is comparable with that of seyfert galaxy MCG 8-11-11 ($\mathrm{L} \sim 7.10^{\frac{1}{46} \mathrm{erg} / \mathrm{s} \text {) }}$ in the energy range $(0.09$ + 3) $\mathrm{MeV} / 4 /$ and with that of 30120 quasar ($I \simeq 2 \cdot 10^{46} \mathrm{erg} / \mathrm{s}$) in the energy range ($10-1000$) MeV .
 the energy of several. MeV as in the case of quasar 30120 and seyfert galaxiesiNGC 4151 and MCG 8-11-11.

The T-ray luminosity of 30120 is ($1.1-2.3$) $10^{44} \mathrm{erg} / \mathrm{s}$ and the ratio $I_{\gamma} / L_{x}=(1 \div 1.5) \cdot 10^{2}$ is in good agreement with similar ratios for seyfert galaxies liCG $8-11-11$ and IVGC 4151 observed in the region of low-energy gamma-rays /4/: $I_{\gamma} / I_{x}=(6 \div 14) \cdot 10^{2}$ and $(1 \div 5) \cdot 10^{2}$, respectively. Thus the ratio $I_{\gamma} / I_{x} \sim 10^{2}$ might be a characteristic quantity for the objects of such a type.

The gemma-source in the region $I^{\prime \prime} \approx 190^{\circ}, \quad b \simeq-20^{\circ}$ was detected for the first time. Note, that this source is located near the edge of the regions scanned in SAS-II and COS-B experiments. Assuming the energy spectrum of this source (G 190-20) to be power law we calculated power index $\alpha \simeq 2$ and gamma-fluxes for energy range $E \gamma>5 \mathrm{MeV}$ and $\mathbb{E} \gamma>20 \mathrm{MeV}$ are presented in the Table. The excess mentioned above cannot be identified with the objects observed in other energy ranges
due to insufficient angular resolution of the gamma- telescope, but one should mind that within the indicated region X-ray sources with $J_{x} \geqslant 2 \cdot 10^{-6} \mathrm{~J}_{y}\left(\mathrm{E}_{x}=2 \div 6 \mathrm{keV}\right) / 6 /$ are absent.

References.

1. Glyanenko A.S. et al. "Elementary Particles and Cosmic Rays", No5, ed. Kotov Yu.D., Moscow, Atomizdat, 1980, p.44.
2. Iyudin A.F. et al, Adv. Space Res., 1983, v.3, H04, p.53.
3. Hermsen W., Ph. D. Thesis, 1980, Univ. of Leiden.
4. Bassani L. Space Sci. Rev., 1981, v. 30, p. 107.
5. Bignamy G.F., Astrophys. J., 1979, v.232, p.649.
6. Forman W., Astrophys. J., Suppl., 1978, v. 38, p. 357.
