55 research outputs found

    Approximations based on density-matrix embedding theory for density-functional theories

    Get PDF
    Recently a novel approach to find approximate exchange–correlation functionals in density-functional theory was presented (Mordovina et al 2019 J. Chem. Theory Comput. 15 5209), which relies on approximations to the interacting wave function using density-matrix embedding theory (DMET). This approximate interacting wave function is constructed by using a projection determined by an iterative procedure that makes parts of the reduced density matrix of an auxiliary system the same as the approximate interacting density matrix. If only the diagonal of both systems are connected this leads to an approximation of the interacting-to-non-interacting mapping of the Kohn–Sham approach to density-functional theory. Yet other choices are possible and allow to connect DMET with other density-functional theories such as kinetic-energy density functional theory or reduced density-matrix functional theory. In this work we give a detailed review of the basics of the DMET procedure from a density-functional perspective and show how both approaches can be used to supplement each other. We do not present a specific realization of combining density-functional methods with DMET but rather provide common grounds to facilitate future developments that encompass both approaches. We do so explicitly for the case of a one-dimensional lattice system, as this is the simplest setting where we can apply DMET and the one that was originally presented. Among others we highlight how the mappings of density-functional theories can be used to identify uniquely defined auxiliary systems and projections in DMET and how to construct approximations for different density-functional theories using DMET inspired projections. Such alternative approximation strategies become especially important for density-functional theories that are based on non-linearly coupled observables such as kinetic-energy density-functional theory, where the Kohn–Sham fields are no longer obtainable by functional differentiation of an energy expression, or for reduced density-matrix functional theories, where a straightforward Kohn–Sham construction is not feasible

    Orbitals from local RDMFT: Are they Kohn-Sham or Natural Orbitals?

    Get PDF
    Recently, an approximate theoretical framework was introduced, called local reduced density matrix functional theory (local-RDMFT), where functionals of the one-body reduced density matrix (1-RDM) are minimized under the additional condition that the optimal orbitals satisfy a single electron Schrödinger equation with a local potential. In the present work, we focus on the character of these optimal orbitals. In particular, we compare orbitals obtained by local-RDMFT with those obtained with the full minimization (without the extra condition) by contrasting them against the exact NOs and orbitals from a density functional calculation using the local density approximation (LDA). We find that the orbitals from local-RMDFT are very close to LDA orbitals, contrary to those of the full minimization that resemble the exact NOs. Since local RDMFT preserves the good quality of the description of strong static correlation, this finding opens the way to a mixed density/density matrix scheme, where Kohn-Sham orbitals obtain fractional occupations from a minimization of the occupation numbers using 1-RDM functionals. This will allow for a description of strong correlation at a cost only minimally higher than a density functional calculation

    Force balance approach for advanced approximations in density functional theories

    No full text
    We propose a systematic and constructive way to determine the exchange-correlation potentials of density-functional theories including vector potentials. The approach does not rely on energy or action functionals. Instead, it is based on equations of motion of current quantities (force balance equations) and is feasible both in the ground-state and the time-dependent settings. This avoids, besides differentiability and causality issues, the optimized-effective-potential procedure of orbital-dependent functionals. We provide straightforward exchange-type approximations for different density functional theories that for a homogeneous system and no external vector potential reduce to the exchange-only local-density and Slater Xα approximations

    Self-Consistent Density-Functional Embedding: A Novel Approach for Density-Functional Approximations

    No full text
    In the present work, we introduce a self-consistent density-functional embedding technique, which leaves the realm of standard energy-functional approaches in density functional theory and targets directly the density-to-potential mapping that lies at its heart. Inspired by the density matrix embedding theory, we project the full system onto a set of small interacting fragments that can be solved accurately. Based on the rigorous relation of density and potential in density functional theory, we then invert the fragment densities to local potentials. Combining these results in a continuous manner provides an update for the Kohn–Sham potential of the full system, which is then used to update the projection. We benchmark our approach for molecular bond stretching in one and two dimensions and show that, in these cases, the scheme converges to accurate approximations for densities and Kohn–Sham potentials. We demonstrate that the known steps and peaks of the exact exchange-correlation potential are reproduced by our method with remarkable accuracy

    A correction for the Hartree-Fock density of states for jellium without screening

    Get PDF
    We revisit the Hartree-Fock (HF) calculation for the uniform electron gas, or jellium model, whose predictions—divergent derivative of the energy dispersion relation and vanishing density of states (DOS) at the Fermi level—are in qualitative disagreement with experimental evidence for simple metals. Currently, this qualitative failure is attributed to the lack of screening in the HF equations. Employing Slater’s hyper-Hartree-Fock (HHF) equations, derived variationally, to study the ground state and the excited states of jellium, we find that the divergent derivative of the energy dispersion relation and the zero in the DOS are still present, but shifted from the Fermi wavevector and energy of jellium to the boundary between the set of variationally optimised and unoptimised HHF orbitals. The location of this boundary is not fixed, but it can be chosen to lie at arbitrarily high values of wavevector and energy, well clear from the Fermi level of jellium. We conclude that, rather than the lack of screening in the HF equations, the well-known qualitative failure of the ground-state HF approximation is an artifact of its nonlocal exchange operator. Other similar artifacts of the HF nonlocal exchange operator, not associated with the lack of electronic correlation, are known in the literature

    Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems

    Get PDF
    Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems

    Foundations of self-consistent particle-rotor models and of self-consistent cranking models

    Get PDF
    The Kerman-Klein formulation of the equations of motion for a nuclear shell model and its associated variational principle are reviewed briefly. It is then applied to the derivation of the self-consistent particle-rotor model and of the self-consistent cranking model, for both axially symmetric and triaxial nuclei. Two derivations of the particle-rotor model are given. One of these is of a form that lends itself to an expansion of the result in powers of the ratio of single-particle angular momentum to collective angular momentum, that is essentual to reach the cranking limit. The derivation also requires a distinct, angular-momentum violating, step. The structure of the result implies the possibility of tilted-axis cranking for the axial case and full three-dimensional cranking for the triaxial one. The final equations remain number conserving. In an appendix, the Kerman-Klein method is developed in more detail, and the outlines of several algorithms for obtaining solutions of the associated non-linear formalism are suggested.Comment: 29 page
    • …
    corecore