23,306 research outputs found

    Spin glass freezing and superconductivity in YBa2(Cu(1-x)Fe(x))3O7 alloys

    Get PDF
    The dynamics were studied of the iron spins in superconducting YBa2(Cu(0.94)Fe(0.06))3O7 by neutron time of flight measurements. Two samples were studied with slightly different characteristics, as shown by resistivity and neutron diffraction measurements. The same dynamical anomalies are observed by neutrons in both samples. Differences appear qualitative but not quantitative. In the whole temperature range, the q-dependence of the magnetic intensity mainly reflects the magnetic form factor of iron which shows that the iron spins are almost uncorrelated. The elastic and quasielastic intensities strongly vary with temperature. A spin glass like freezing is revealed at low temperature by a sharp decrease of the quasielastic intensity, an increase of the 'elastic' or resolution limited intensity and a minimum in the quasielastic width. The freezing temperature (T sub f - 18 K) corresponds to that already determined by a magnetic splitting in Mossbauer experiments. Above T sub f, the relaxation of the iron spins in the paramagnetic state is modified by the occurrence of superconductivity. An increase was observed of the quasielastic intensity and of the quasielastic width at the superconducting transition

    A note on q-Bernstein polynomials

    Full text link
    In this paper we constructed new q-extension of Bernstein polynomials. Fron those q-Berstein polynomials, we give some interesting properties and we investigate some applications related this q-Bernstein polynomials.Comment: 13 page

    Out-of-plane dielectric constant and insulator-superconductor transition in Bi_2Sr_2Dy_{1-x}Er_xCu_2O_8 single crystals

    Full text link
    The out-of-plane dielectric constant of the parent insulator of the high-temperature superconductor Bi_2Sr_2(Dy,Er)Cu_2O_8 was measured and analysed from 80 to 300 K in the frequency range of 10^6-10^9 Hz. All the samples were found to show a fairly large value of 10-60, implying some kind of charge inhomogeneity in the CuO_2 plane. Considering that the superconducting sample Bi_2Sr_2(Ca,Pr)Cu_2O_8 also shows a similar dielectric constant, the charge inhomogeneity plays an important role in the insulator-superconductor transition.Comment: RevTex4 format, 5 pages, 3 figures, submitted to J. Phys. Condens. Ma

    Planetary geosciences, 1989-1990

    Get PDF
    NASA's Planetary Geosciences Programs (the Planetary Geology and Geophysics and the Planetary Material and Geochemistry Programs) provide support and an organizational framework for scientific research on solid bodies of the solar system. These research and analysis programs support scientific research aimed at increasing our understanding of the physical, chemical, and dynamic nature of the solid bodies of the solar system: the Moon, the terrestrial planets, the satellites of the outer planets, the rings, the asteroids, and the comets. This research is conducted using a variety of methods: laboratory experiments, theoretical approaches, data analysis, and Earth analog techniques. Through research supported by these programs, we are expanding our understanding of the origin and evolution of the solar system. This document is intended to provide an overview of the more significant scientific findings and discoveries made this year by scientists supported by the Planetary Geosciences Program. To a large degree, these results and discoveries are the measure of success of the programs

    Microcavity quantum-dot systems for non-equilibrium Bose-Einstein condensation

    Get PDF
    We review the practical conditions required to achieve a non-equilibrium BEC driven by quantum dynamics in a system comprising a microcavity field mode and a distribution of localised two-level systems driven to a step-like population inversion profile. A candidate system based on eight 3.8nm layers of In(0.23)Ga(0.77)As in GaAs shows promising characteristics with regard to the total dipole strength which can be coupled to the field mode.Comment: 4 pages, 4 figures, to be published in J. Phys. Conf. Ser. for QD201

    Direct evidence for a piezoelectriclike effect in coherently strained SiGe/Si heterostructures

    Get PDF
    A hybrid acoustic spectroscopy technique has been used to demonstrate the (reversible) conversion of high frequency electric fields into longitudinal acoustic waves within a modulation-doped pseudomorphic Si/Si0.88Ge0.12/Si heterostructure. This provides compelling evidence for the existence of a piezoelectriclike coupling within such structures

    Quantum state preparation in semiconductor dots by adiabatic rapid passage

    Full text link
    Preparation of a specific quantum state is a required step for a variety of proposed practical uses of quantum dynamics. We report an experimental demonstration of optical quantum state preparation in a semiconductor quantum dot with electrical readout, which contrasts with earlier work based on Rabi flopping in that the method is robust with respect to variation in the optical coupling. We use adiabatic rapid passage, which is capable of inverting single dots to a specified upper level. We demonstrate that when the pulse power exceeds a threshold for inversion, the final state is independent of power. This provides a new tool for preparing quantum states in semiconductor dots and has a wide range of potential uses.Comment: 4 pages, 4 figure

    Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro

    Get PDF
    The blood-brain barrier prevents the entry of many therapeutic agents into the brain. Various nanocarriers have been developed to help agents to cross this barrier, but they all have limitations, with regard to tissue-selectivity and their ability to cross the endothelium. This study investigated the potential for 4 nm coated gold nanoparticles to act as selective carriers across human brain endothelium and subsequently to enter astrocytes. The transfer rate of glucose-coated gold nanoparticles across primary human brain endothelium was at least three times faster than across non-brain endothelia. Movement of these nanoparticles occurred across the apical and basal plasma membranes via the cytosol with relatively little vesicular or paracellular migration; antibiotics that interfere with vesicular transport did not block migration. The transfer rate was also dependent on the surface coating of the nanoparticle and incubation temperature. Using a novel 3-dimensional co-culture system, which includes primary human astrocytes and a brain endothelial cell line hCMEC/D3, we demonstrated that the glucose-coated nanoparticles traverse the endothelium, move through the extracellular matrix and localize in astrocytes. The movement of the nanoparticles through the matrix was >10 µm/hour and they appeared in the nuclei of the astrocytes in considerable numbers. These nanoparticles have the correct properties for efficient and selective carriers of therapeutic agents across the blood-brain barrier

    Elastic energy of polyhedral bilayer vesicles

    Get PDF
    In recent experiments [M. Dubois, B. Dem\'e, T. Gulik-Krzywicki, J.-C. Dedieu, C. Vautrin, S. D\'esert, E. Perez, and T. Zemb, Nature (London) Vol. 411, 672 (2001)] the spontaneous formation of hollow bilayer vesicles with polyhedral symmetry has been observed. On the basis of the experimental phenomenology it was suggested [M. Dubois, V. Lizunov, A. Meister, T. Gulik-Krzywicki, J. M. Verbavatz, E. Perez, J. Zimmerberg, and T. Zemb, Proc. Natl. Acad. Sci. U.S.A. Vol. 101, 15082 (2004)] that the mechanism for the formation of bilayer polyhedra is minimization of elastic bending energy. Motivated by these experiments, we study the elastic bending energy of polyhedral bilayer vesicles. In agreement with experiments, and provided that excess amphiphiles exhibiting spontaneous curvature are present in sufficient quantity, we find that polyhedral bilayer vesicles can indeed be energetically favorable compared to spherical bilayer vesicles. Consistent with experimental observations we also find that the bending energy associated with the vertices of bilayer polyhedra can be locally reduced through the formation of pores. However, the stabilization of polyhedral bilayer vesicles over spherical bilayer vesicles relies crucially on molecular segregation of excess amphiphiles along the ridges rather than the vertices of bilayer polyhedra. Furthermore, our analysis implies that, contrary to what has been suggested on the basis of experiments, the icosahedron does not minimize elastic bending energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for large polyhedron sizes, the snub dodecahedron and the snub cube both have lower total bending energies than the icosahedron

    Exciton Footprint of Self-assembled AlGaAs Quantum Dots in Core-Shell Nanowires

    Get PDF
    Quantum-dot-in-nanowire systems constitute building blocks for advanced photonics and sensing applications. The electronic symmetry of the emitters impacts their function capabilities. Here, we study the fine structure of gallium-rich quantum dots nested in the shell of GaAs-AlGaAs core-shell nanowires. We used optical spectroscopy to resolve the splitting resulting from the exchange terms and extract the main parameters of the emitters. Our results indicate that the quantum dots can host neutral as well as charges excitonic complexes and that the excitons exhibit a slightly elongated footprint, with the main axis tilted with respect to the growth axis. GaAs-AlGaAs emitters in a nanowire are particularly promising for overcoming the limitations set by strain in other systems, with the benefit of being integrated in a versatile photonic structure
    corecore