Quantum-dot-in-nanowire systems constitute building blocks for advanced
photonics and sensing applications. The electronic symmetry of the emitters
impacts their function capabilities. Here, we study the fine structure of
gallium-rich quantum dots nested in the shell of GaAs-AlGaAs core-shell
nanowires. We used optical spectroscopy to resolve the splitting resulting from
the exchange terms and extract the main parameters of the emitters. Our results
indicate that the quantum dots can host neutral as well as charges excitonic
complexes and that the excitons exhibit a slightly elongated footprint, with
the main axis tilted with respect to the growth axis. GaAs-AlGaAs emitters in a
nanowire are particularly promising for overcoming the limitations set by
strain in other systems, with the benefit of being integrated in a versatile
photonic structure