6,055 research outputs found

    Canonical circuit quantization with linear nonreciprocal devices

    Full text link
    Nonreciprocal devices effectively mimic the breaking of time-reversal symmetry for the subspace of dynamical variables that they couple, and can be used to create chiral information processing networks. We study the systematic inclusion of ideal gyrators and circulators into Lagrangian and Hamiltonian descriptions of lumped-element electrical networks. The proposed theory is of wide applicability in general nonreciprocal networks on the quantum regime. We apply it to pedagogical and pathological examples of circuits containing Josephson junctions and ideal nonreciprocal elements described by admittance matrices, and compare it with the more involved treatment of circuits based on nonreciprocal devices characterized by impedance or scattering matrices. Finally, we discuss the dual quantization of circuits containing phase-slip junctions and nonreciprocal devices.Comment: 12 pages, 4 figures; changes made to match the accepted version in PR

    Ensemble Quantum Computation with atoms in periodic potentials

    Full text link
    We show how to perform universal quantum computation with atoms confined in optical lattices which works both in the presence of defects and without individual addressing. The method is based on using the defects in the lattice, wherever they are, both to ``mark'' different copies on which ensemble quantum computation is carried out and to define pointer atoms which perform the quantum gates. We also show how to overcome the problem of scalability on this system

    Quantum Memristors

    Get PDF
    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems

    Circuit Quantum Electrodynamics with a Superconducting Quantum Point Contact

    Get PDF
    We consider a superconducting quantum point contact in a circuit quantum electrodynamics setup. We study three different configurations, attainable with current technology, where a quantum point contact is coupled galvanically to a coplanar waveguide resonator. Furthermore, we demonstrate that the strong and ultrastrong coupling regimes can be achieved with realistic parameters, allowing the coherent exchange between a superconducting quantum point contact and a quantized intracavity field.Comment: 5 pages, 4 figures. Updated version, accepted for publication as a Rapid Communication in Physical Review
    • …
    corecore