127 research outputs found

    ИССЛЕДОВАНИЕ ЛИНЕЙНОГО ИМПУЛЬСНО-ИНДУКЦИОННОГО ЭЛЕКТРОМЕХАНИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ ПРИ РАЗЛИЧНЫХ СХЕМАХ ПИТАНИЯ ИНДУКТОРА

    Get PDF
    Purpose. The goal of the paper is to investigate the influence of the power circuits of the linear pulse-induction electromechanical converters (LPIEC), which form the current pulse of excitation of the inductor from the capacitive energy storage (CES), to its electromechanical parameters. Methodology. A circuit mathematical model of LPIEC was developed, on the basis of which recurrence relations were obtained for calculating the interrelated electromagnetic, mechanical, and thermal parameters of the LPIEC. This model makes it possible to calculate the LPIEC parameters for various power circuits, the inductor of which is excited by the CES. Results. It is established that electromechanical LPEC parameters with power circuit forming an aperiodic current excitation pulse of an inductor are better than in LPIEC with excitation of an inductor by an unipolar current pulse, but worse than in LPIEC with excitation of an inductor by a vibrationally damped current pulse. In this converter, during operation, the inductor is heated most, and the armature is heated least. It is established that in LPIEC with power circuit that forms an aperiodic current pulse of excitation of an inductor with the connection of an additional CES, all electromechanical parameters are higher in comparison with the LPIEC with a power circuit that forms a vibrationally damped current excitation pulse of the inductor. However, in this LPIEC the excess of the temperatures of the active elements increases, especially strongly in the inductor, and the efficiency of the converter decreases. Originality. For the first time, the LPIEC has been investigated using the power circuit that forms an aperiodic current pulse of excitation of an inductor with the connection of an additional CES. It is established that in this LPIEC all electromechanical parameters are higher than for LPIEC with power circuits forming an unipolar or oscillating-damped current excitation pulse of the inductor. Practical value. In the LPIEC with power circuit that forms an aperiodic current pulse of excitation of the inductor with the connection of an additional CES, the electromechanical LPIEC parameters increase. This increases the temperature rise of the inductor, and the temperature rise of the armature decreases. The effectiveness of this LPIEC is also reduced.На основе разработанной цепной математической модели получены рекуррентные соотношения для расчета взаимосвязанных электромагнитных, механических и тепловых параметров линейного импульсно-индукционного электромеханического преобразователя (ЛИИЭП). Показано, что электромеханические показатели ЛИИЭП со схемой питания индуктора, формирующей апериодический токовый импульс возбуждения, лучше, чем у ЛИИЭП с возбуждением индуктора однополярным токовым импульсом, но хуже, чем у ЛИИЭП с возбуждением индуктора колебательно-затухающим токовым импульсом. В данном преобразователе в процессе работы наиболее сильно нагревается индуктор и наименее нагревается якорь. Показано, что в ЛИИЭП со схемой питания индуктора, формирующей апериодический токовый импульс возбуждения с подключением добавочного емкостного накопителя энергии, все электромеханические показатели выше по сравнению с ЛИИЭП со схемой питания индуктора, формирующей колебательно-затухающий токовый импульс возбуждения. Однако в этом ЛИИЭП возрастают превышения температур активных элементов, особенно сильно – индуктора и снижается КП

    Experimental research of dynamic damping of lateral vibrations of a rigid cantilever beam

    Get PDF
    This work considers passive dynamic absorber (without additional energy source) of the simplest type: a non-controlled spring with one degree of freedom. Object of vibration suppression is transversal vibrations of rigid cantilever beam. The inertial element is connected to the vibration protection object by means of elastic metal element - nonlinear conical coil spring. Experiments were performed on the universal vibration system TM 150

    Periodic Skeletons of Nonlinear Dynamical Systems in the Problems of Global Bifurcation Analysis

    Get PDF
    The construction of the periodic skeleton is a search for stable and unstable periodic regimes for a given parameter space of nonlinear dynamical periodicals systems. This stage of the main non-linear bifurcation theory, which is designed for a global analysis of nonlinear dynamical systems and the state of the parameter space that allows for complete bifurcation analysis, build complex bifurcation group and discover new previously unknown solutions

    Bifurcation analysis by method of complete bifurcation groups of the driven system with two degrees of freedom with three equilibrium positions

    Get PDF
    This paper devoted to application of the new method of complete bifurcation groups (MCBG), which shows very good results in single-degree-of-freedom tasks, for global bifurcation analysis of systems with two degrees-offreedom on example of two-mass chain system with symmetrical elastic characteristic with two potential wells between masses. It is shown, that using of the MCBG allows to implement global bifurcation analysis of nonlinear oscillators with 2 DOF, and to find new nonlinear effects, bifurcation groups, and unknown before periodic and chaotic regime

    AN OPTIMIZATION APPROACH TO THE CHOICE OF PARAMETERS OF LINEAR PULSE INDUCTION ELECTROMECHANICAL CONVERTER

    Get PDF
    Purpose. The purpose of the paper is to select the main parameters of the linear pulse induction electromechanical converters (LPIEC) for high-speed and power use with the use of the optimization approach, which provides an increase in speed and power indicators with limited electric, thermal and mass-dimensions. Methodology. A technique for finding the maximum of the integral efficiency criterion of LPIEC in the search space using a global optimization method that randomly searches for parameters, preventing entry into a local maximum, and a local method ensuring the contraction of the range of parameters with a global maximum to minimum dimensions is developed. As a global optimization method, genetic algorithms are used, and the Nelder-Mead method is used as the local method. Results. The LPIEC inductor should have a maximum external and minimum internal diameter, and its height should be less than that of the LPIEC of the basic design. The armature should have a maximum outer diameter, and the thickness of its wire should be minimal. The armature should be made with a significantly higher height, a greater number of turns and a wider wire. The height of the LPIEC inductor for power purposes should be almost the same as that of the LPIEC of the basic design. In this case, the number of turns of the inductor and the cross section of its wire should be approximately the same. The armature should be made with a slightly larger inner diameter and a significantly higher height. This armature should have a larger number of turns of wire, which must be stacked in 4 layers, and a large width of the wire. The average energy value and voltage of the capacitive energy storage for the LPIEC for high-speed and power applications should be higher than for the LPIEC of the basic design. Originality. An optimization approach to the choice of LPIEC parameters with a multi-turn squirrel arm is developed, which consists in finding the maximum of an integral efficiency criterion that takes into account the maximum speed and efficiency in a high-speed converter, the amplitude and magnitude of the electrodynamic force pulse in a power converter, with minimum temperature excesses, the mass of active elements and current of the inductor. The optimization uses a chain mathematical model that takes into account the interconnected electrical, magnetic, thermal and mechanical processes of the LPIEC. Practical value. The electric parameters of the capacitive energy storage device and the geometric parameters of the LPIEC are determined, which ensure the largest values of the integral efficiency criterion depending on the adopted version of the efficiency evaluation strategy. In optimized speed and power transfer converters, the integral efficiency criteria are 2.2 times higher on average than in the basic performance of the LPIEC

    ВЛИЯНИЕ ПАРАМЕТРОВ ЯКОРЯ ЛИНЕЙНОГО ИМПУЛЬСНОГО ЭЛЕКТРОМЕХАНИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ НА ЕГО ЭФФЕКТИВНОСТЬ

    Get PDF
    Purpose. The evaluation of the effect of armature parameters on the efficiency of a linear pulsed electromechanical converter, taking into account the power, speed, constructive and environmental parameters. Methodology. First, the height of the electrically conductive, coil and ferromagnetic armature of a linear pulse electromechanical converter is determined, at which the highest velocity develops. An integral efficiency index is introduced, which takes into account, in a relative way, the power, speed, energy, electrical and field characteristics of the converter. Variants of the efficiency evaluation strategy are used that take into account the priority of each indicator of a linear pulse electromechanical converter using the appropriate weighting factor in the integral efficiency index. Results. A mathematical model of a linear pulsed electromechanical converter is developed. It is established that as the height of the electroconductive, coil and ferromagnetic armature increases, the force pulse increases. The greatest speed develops with the use of a coil armature, and the smallest with an electroconductive armature. In the converter with coil and ferromagnetic armature, practically the same values of the electrodynamic and electromagnetic force pulse are realized, while in the converter the electrodynamic force is 1.52 times smaller in the converter by the electrically conductive armature. It is established that with all efficiency evaluation strategies, the converter with a coil armature is the most effective, even in spite of its constructive complexity, and the converter with a ferromagnetic armature is the least effective, although it is constructively the simplest. Originality. For the first time, using the integral efficiency index, which takes into account the power, speed, energy, electrical and field indices in a relative way, it is established that with all efficiency evaluation strategies, the converter with a coil armature is the most effective, and the converter with a ferromagnetic anchor is the least effective. Practical value. The height of the electrically conductive, coil and ferromagnetic armature of a linear pulse electromechanical converter is determined, at which the highest speed develops. It is shown that when using an electrically conductive armature, the value of the electrodynamic force pulse is lower than when using a coil and ferromagnetic armature. It is established that the converter with a coil armature is the most efficient, and the converter with a ferromagnetic armature is the least effective.Разработана математическая модель линейного импульсного электромеханического преобразователя (ЛИЭП), описывающая быстропротекающие и взаимосвязанные электромагнитные и электромеханические процессы, проявляющиеся при перемещении якоря относительно индуктора. Показано, что при увеличении высоты электропроводящего, катушечного и ферромагнитного якорей ЛИЭП происходит увеличение импульса силы. Наибольшая скорость развивается в ЛИЭП с катушечным якорем, а наименьшая – в ЛИЭП с электропроводящим якорем. В ЛИЭП с катушечным и ферромагнитным якорями реализуются практически одинаковые значения импульса электродинамической и электромагнитной силы, а в ЛИЭП с электропроводящим якорем импульс электродинамической силы в 1,52 раза меньше. Введен интегральный показатель эффективности, который в относительном виде учитывает силовые, скоростные, энергетические, электрические и полевые показатели. Установлено, что при всех стратегиях оценки эффективности наиболее эффективным является ЛИЭП с катушечным якорем, а наименее эффективным является ЛИЭП с ферромагнитным якорем

    ВОЗБУЖДЕНИЕ СЕРИЕЙ ИМПУЛЬСОВ ЛИНЕЙНОГО ИМПУЛЬСНОГО ПРЕОБРАЗОВАТЕЛЯ ЭЛЕКТРОДИНАМИЧЕСКОГО ТИПА, РАБОТАЮЩЕГО В СИЛОВОМ И СКОРОСТНОМ РЕЖИМАХ

    Get PDF
    Purpose. The aim of the article is to increase the efficiency of linear pulse electrodynamic type converter (LPEC) when operating in high-speed and force modes by reducing the amplitude of the recoil force by exciting its windings with a series of pulses from the capacitive energy storage (CES). Methodology. Using the LPEC mathematical model, in which the equations describing the interconnected electrical, magnetic, mechanical and thermal processes are presented in a recursive form, the electrodynamic and electromechanical characteristics of LPEC are simulated by excitation by a single and a series of pulses from CES sections. Results. It was found that when a single pulse is excited by an LPEC operating in a high-speed mode, in which the armature accelerates the actuator, compared with the force mode in which the armature is inhibited, the current amplitude in the windings decreases by 7.5 %, and the amplitudes of electrodynamic force (EDF) – by 21.8 %, impulse values of EDF – by 27.1 %. In this case, the armature winding with the actuating element accelerates to a speed of 7.1 m/s. When excited by a series of pulses from the same sections of the CES during LPEC operation in the force mode, the amplitudes of the current pulses and the EDF are practically unchanged, and when operating in high-speed mode, the amplitudes of the currents and the EDF gradually decrease. Both in power and in high-speed operating modes, an increase in the number of excitation pulses while conserving the energy of the CES leads to a decrease in the main indicators of LPEC. But by reducing the amplitude of the EDF, which manifests itself as a recoil force, the efficiency of LPEC increases. Originality. It is shown that the excitation of LPEC by a series of pulses increases the efficiency of LPEC when operating in high-speed and power modes, providing a minimum amplitude of the EDF, which determines the recoil force acting on the inductor winding. Practical value. For LPEC operating in high-speed mode, it is proposed to reduce the maximum current amplitudes and EDF due to the sequential increase in capacitances of sections of the CES, forming a series of excitation pulses. For LPEC, operating in force mode, it is advisable to use the same capacities of all sections of the CES.Представлена математическая модель линейного импульсного преобразователя электродинамического типа (ЛИПЭТ), в которой решения уравнений, описывающих взаимосвязанные электрические, магнитные, механические и тепловые процессы, представлены в рекуррентном виде. Исследованы электромеханические и электродинамические характеристики ЛИПЭТ при работе в скоростном режиме, обеспечивающем ускорение обмотки якоря с исполнительным элементом, и в силовом режиме, когда обмотка якоря заторможена. Показано, что при возбуждении одиночным импульсом ЛИПЭТ, работающего в скоростном режиме, по сравнению с силовым режимом происходит уменьшение амплитуды тока в обмотках на 7,5 %, амплитуды электродинамических усилий (ЭДУ) – на 21,8 %, значения импульса ЭДУ – на 27,1 %. При этом обмотка якоря с исполнительным элементом разгоняется до скорости  7,1 м/с. При возбуждении серией импульсов от одинаковых секций емкостного накопителя энергии (ЕНЭ) и работе ЛИПЭТ в силовом режиме амплитуды импульсов тока и ЭДУ практически неизменны, а при работе в скоростном режиме происходит последовательное уменьшение амплитуд токов и ЭДУ. Увеличение количества импульсов возбуждения при сохранении энергии ЕНЭ приводит к уменьшению основных показателей ЛИПЭТ. Но за счет уменьшения амплитуды ЭДУ, которая проявляется как сила отдачи, эффективность ЛИПЭТ увеличивается. Для ЛИПЭТ, работающего в скоростном режиме, предложено уменьшение максимальных амплитуд тока и ЭДУ за счет последовательного увеличения емкостей секций ЕНЭ, формирующих серии импульсов возбуждения. Для ЛИПЭТ, работающего в силовом режиме, целесообразно использовать одинаковые емкости всех секций ЕНЭ

    ЭЛЕКТРОМЕХАНИЧЕСКИЕ ПРОЦЕССЫ В ЛИНЕЙНОМ ИМПУЛЬСНО-ИНДУКЦИОННОМ ЭЛЕКТРОМЕХАНИЧЕСКОМ ПРЕОБРАЗОВАТЕЛЕ С ПОДВИЖНЫМ ИНДУКТОРОМ И ДВУМЯ ЯКОРЯМИ

    Get PDF
    Purpose. The purpose of the paper is to determine the influence of the height of the mobile and stationary disk electrically conductive armatures covering the movable inductor on the electromechanical processes of linear pulsed-induction electromechanical converter (LPIEC). Methodology. With the help of the developed mathematical model that describes electromechanical and thermal processes of LPIEC, the influence of the heights of the armatures on electromechanical processes, the values of the electrodynamic forces acting on the inductor and armature, and the moving speed of the movable armature (MA) is established. Results. It is shown that if the height of the stationary armature (SA) is twice the height of the MA, then the inductor at the initial instant of time is acted upon by electrodynamics forces pressing it to the SA, and the displacement of the inductor begins with a delay of 0.35 ms. If the height of the MA is twice the height of the SA, then the electrodynamics forces act on the inductor at the initial instant of time, repelling it from the SA, and its movement begins with a delay of 0.1 ms. If the heights of the SA and the MA are equal, then until the time 0.15 ms on the inductor, the electrodynamics forces practically do not act and the inductor moving relative to the SA begins with a delay of 0.25 ms. Originality. The effect of the geometric parameters of the SA and MA on the velocity of the inductor moving relative to the SA, MA relative to the inductor and the MA relative to the SA is established. It has been established that the highest velocity of the MA relative to the SA develops the lowest MA, and the height of the SA does not affect it practically. However, with the increase in the height of the MA, the effect of SA begins to affect. In this case, it is expedient to select the height of the SA to be 0.4-0.42 of the height of the inductor. Practical value. It is shown that as the weight of the actuating element increases, the currents in the active elements of the LPIEC increase, the induction velocities of the inductor relative to the SA and the MA decrease relative to the inductor. At the same time, the maximum the electrodynamic forces values acting on the inductor decrease, and the armatures increase. Moreover, the maximum the electrodynamic forces acting on the MA are less than similar forces acting on the SA.Разработана математическую модель, которая описывает электромеханические процессы в линейном импульсно-индукционном электромеханическом преобразователе с подвижным индуктором, взаимодействующим со стационарным якорем (СЯ) и подвижным якорем (ПЯ), ускоряющим исполнительный элемент. Установлено влияние высот якорей на электромеханические процессы в преобразователе. Если высота СЯ в два раза больше высоты ПЯ, то на индуктор в начальный момент времени действуют электродинамические усилия (ЭДУ), прижимающие его к СЯ и перемещение индуктора начинается с задержкой 0,35 мс. Если высота ПЯ в два раза больше высоты СЯ, то на индуктор в начальный момент времени действуют ЭДУ, отталкивающие его от СЯ, и его перемещение начинается с задержкой 0,1 мс. Если высоты СЯ и ПЯ равны, то до момента времени 0,15 мс на индуктор практически не действуют ЭДУ и перемещение индуктора начинается с задержкой 0,25 мс. Установлены комбинации геометрических параметров якорей, при которых действуют как наибольшие, так и наименьшие импульсы ЭДУ. Наибольшие скорости развивает наиболее низкий ПЯ, причем высота СЯ на них практически не влияет. С увеличением массы исполнительного элемента происходит увеличение токов в активных элементах преобразователя и уменьшение скоростей индуктора и ПЯ. При этом максимальные значения ЭДУ, действующих на индуктор, уменьшаются, а на якоря – увеличиваются

    ВЛИЯНИЕ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ИНДУКТОРА И ЯКОРЯ НА ПОКАЗАТЕЛИ ЛИНЕЙНОГО ИМПУЛЬСНОГО ЭЛЕКТРОМЕХАНИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ ЭЛЕКТРОДИНАМИЧЕСКОГО ТИПА

    Get PDF
    Purpose. The aim of the paper is to study the influence of geometrical parameters, namely, the number of layers and the cross section of the copper tire of the inductor and the armature coils on the power and speed indicators of a linear pulse electromechanical converter (LPEC) of an electrodynamic type. Methodology. On the basis of the developed chain mathematical model, recurrent relations are obtained for the calculation of interconnected electromagnetic, mechanical and thermal processes of LPEC of an electrodynamic type. The effect of the thickness of a square copper tire and the number of its layers in the inductor and armature coils on the characteristics and characteristics of electrodynamic LPEC is investigated. It is these parameters that determine the number of turns and the axial height of the coils with limited radial dimensions. Results. The influence of the geometrical parameters of the inductor and the armature coils with limited radial dimensions on the electrical and mechanical characteristics of LPEC of an electrodynamic type is established. It has been established that with an increase in the thickness of a rectangular cross-section of copper tire from 1 to 2.5 mm, an increase in the amplitude and pulse of electrodynamic forces (EF) occurs. However, the maximum speed of the armature is the highest at LPEC wound with a 1.5 mm thick tire. The highest efficiency value is demonstrated by LPEC, in which the inductor and armature coils are wound with a 2 mm thick tire. With an increase in the number of layers of the inductor coil tire, the amplitude of the EF decreases significantly, and the magnitude of the EF pulse decreases slightly. As a result, the maximum armature speed, efficiency and temperature rise of the coils are reduced. Originality. It is established that the largest amplitude of the EF is realized in LPEC with the minimum number of layers of tires of the inductor and armature coils. The largest value of the pulse EF occurs when the maximum number of layers of the inductor and the armature. In this case, the largest values of the amplitude and pulse of the EF occur under the condition that the number of tire layers of the inductor and the armature coils are the same. Practical value. It has been established that the greatest efficiency 21.82 % is realized in LPEC, in which the number of tire layers is 2 mm thick with inductor and armature coils are 4. A catapult model for launching an unmanned aerial vehicle was made and tested on the basis of LPEC of an electrodynamic type. Разработана цепная математическая модель линейного импульсного электромеханического преобразователя (ЛИЭП) электродинамического типа. Получены рекуррентные соотношения для расчета взаимосвязанных электромагнитных, механических и тепловых процессов. Установлено, что при увеличении толщины квадратной медной шины катушек индуктора и якоря от 1,0 до 2,5 мм увеличиваются амплитуда и величина импульса электродинамических усилий (ЭДУ). Максимальная скорость якоря наибольшая у ЛИЭП, катушки индуктора и якоря которого намотаны шиной толщиной 1,5 мм. Наибольшее значение КПД у ЛИЭП, катушки которого намотаны шиной толщиной 2,0 мм. При увеличении количества слоев шины катушки индуктора амплитуда ЭДУ уменьшается существенно, а величина импульса ЭДУ – незначительно. Вследствие этого снижаются максимальная скорость якоря, КПД и превышения температуры катушек. Наибольшая амплитуда ЭДУ реализуется в ЛИЭП при минимальном количестве слоев шин катушек индуктора и якоря, а наибольшая величина импульса ЭДУ возникает при максимальном их количестве. При этом наибольшие значения амплитуды и импульса ЭДУ возникают при условии, когда количество слоев шины катушек одинаковы. Наибольший КПД (21,82 %) реализуется в ЛИЭП, у которого катушки индуктора и якоря намотаны в четыре слоя квадратной шины толщиной 2,0 мм. На базе ЛИЭП электродинамического типа была изготовлена и испытана модель катапульты для запуска беспилотного летательного аппарата

    СРАВНИТЕЛЬНЫЙ АНАЛИЗ КОНСТРУКТИВНЫХ СХЕМ ЛИНЕЙНЫХ УДАРНЫХ ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ КОМБИНИРОВАННОГО ТИПА

    Get PDF
    The concept of linear impactor electromechanical converter combined type with a single inductor excited by capacitive energy storage aperiodic pulse is proposed. The concept combines induction and electromagnetic converters. For the synthesis of the converter parameters the Monte Carlo method is used. As the objective function is selected the maximum value of the total pulse the electrodynamic and electromagnetic force acting on the combined anchor. The features and characteristics of electro-magnetic field converters are identified. Considered several of selection policies and by means of integral index identified the most and least efficient design of the converter circuit.Предложена концепция линейного ударного электромеханического преобразователя комбинированного типа с единым индуктором, возбуждаемым от емкостного накопителя энергии апериодическим импульсом, объединяющая индукционный и электромагнитный преобразователи. Для выбора параметров преобразователей использован метод Монте-Карло. В качестве целевой функции выбрана наибольшая величина импульса силы, созданного электродинамической и электромагнитной силами, действующего на комбинированный якорь. Установлены особенности электромеханических характеристик и магнитных полей преобразователей. Рассмотрено несколько стратегий выбора и при помощи интегрального показателя определены наиболее и наименее эффективные конструктивные схемы преобразователей.Запропонована концепція лінійного електромеханічного перетворювача комбінованого типу з єдиним індуктором, що збуджується від ємнісного накопичувача енергії аперіодичним імпульсом, яка об’єднує індукційний та електромеханічний перетворювачі. Для вибору параметрів перетворювачів використано метод Монте-Карло. В якості цільової функції вибрана найбільша величина імпульсу сили, утвореного електродинамічною та електромагнітною силами, що діє на комбінований якір. Встановлені особливості електромеханічних характеристик та магнітних полів перетворювачів. Розглянуто декілька стратегій вибору та за допомогою інтегрального показника визначені найбільш та найменш ефективні конструктивні схеми перетворювачів
    corecore