45 research outputs found

    State-space based mass event-history model I: many decision-making agents with one target

    Full text link
    A dynamic decision-making system that includes a mass of indistinguishable agents could manifest impressive heterogeneity. This kind of nonhomogeneity is postulated to result from macroscopic behavioral tactics employed by almost all involved agents. A State-Space Based (SSB) mass event-history model is developed here to explore the potential existence of such macroscopic behaviors. By imposing an unobserved internal state-space variable into the system, each individual's event-history is made into a composition of a common state duration and an individual specific time to action. With the common state modeling of the macroscopic behavior, parametric statistical inferences are derived under the current-status data structure and conditional independence assumptions. Identifiability and computation related problems are also addressed. From the dynamic perspectives of system-wise heterogeneity, this SSB mass event-history model is shown to be very distinct from a random effect model via the Principle Component Analysis (PCA) in a numerical experiment. Real data showing the mass invasion by two species of parasitic nematode into two species of host larvae are also analyzed. The analysis results not only are found coherent in the context of the biology of the nematode as a parasite, but also include new quantitative interpretations.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS189 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The Effects of Nutrient Concentration, Addition of Thickeners, and Agitation Speed on Liquid Fermentation of Steinernema feltiae

    Get PDF
    Entomopathogenic nematode production in liquid fermentation still requires improvements to maximize efficiency, yield, and nematode quality. Therefore, this study was aimed at developing a more suitable liquid medium for mass production of Steinernema feltiae, by assessing the effects of nutrient concentration, thickeners (primarily agar), and agitation speed on infective juvenile (IJ) yield. Base medium (BM) contained yeast extract (2.3%), egg yolk (1.25%), NaCl (0.5%), and corn oil (4%). All media were inoculated with Xenorhabdus bovienii, and 2 d later, with 2-d-old S. feltiae juveniles. For the nutrient concentration experiment, we evaluated the base medium versus a modified base medium containing all the components, but with 33 concentrations of yeast extract (6.9%), egg yolk (3.75%), and corn oil (12%). The nematodes and bacteria were cultured in 150-ml Erlenmeyer flasks containing 50 ml of liquid medium at (258C) and 180 rpm on a rotary shaker incubator. To assess the effect of thickeners, IJs were inoculated in BM with agar (0.2%), carrageen (0.2%), and carboxymethyl cellulose (0.2% and 0.5%). The addition of 33 more nutrients relative to the BM resulted in a significantly lower yield of nematodes. For agar and agitation speed experiments, five levels of agar in the BM (0%, 0.2%, 0.4%, 0.6%, and 0.8% agar) and two agitation speeds (180 and 280 rpm) were evaluated for production. Increasing agitation speed from 180 to 280 rpm and higher levels of agar in the medium (. 0.2%) significantly increased the yield of bacteria. At the lower agitation speed, media amended with 0.4% and 0.6% agar produced higher nematode yields compared to media without agar. Media with 0.2% and 0.8% agar resulted in intermediate levels of nematode production. At the higher agitation speed, media supplemented with 0.8% agar resulted in the lowest yield of nematodes when compared to the other media tested.Results indicated that increasing nutrient concentration levels was detrimental to nematode production. Also, media containing agar (0.4% and 0.6%) increased nematode yields when cultures were grown at low agitation speed. When IJs were used as the inoculum,0.2% agar also enhanced recovery and nematode yield at the higher agitation speed

    Curative Control of the Peachtree Borer Using Entomopathogenic Nematodes

    Get PDF
    The peachtree borer, Synanthedon exitiosa (Say 1823), is a major pest of stone fruit trees in North America. Current management relies upon preventative control using broad-spectrum chemical insecticides, primarily chlorpyrifos, applied in the late summer or early fall. However, due to missed applications, poor application timing, or other factors, high levels of S. exitiosa infestation may still occur and persist through the following spring. Curative treatments applied in the spring to established infestations would limit damage to the tree and prevent the next generation of S. exitiosa from emerging within the orchard. However, such curative measures for control of S. exitiosa do not exist. Our objective was to measure the efficacy of the entomopathogenic nematode, Steinernema carpocapsae, as a curative control for existing infestations of S. exitiosa. In peach orchards, spring applications of S. carpocapsae (obtained from a commercial source) were made to infested trees and compared with chlorpyrifos and a water-only control in 2014 and 2015. Additionally, types of spray equipment were compared: nematodes were applied via boom sprayer, handgun, or trunk sprayer. To control for effects of application method or nematode source, in vivo laboratory-grown S. carpocapsae, applied using a watering can, was also included. Treatment effects were assessed 39 d (2014) or 19 d (2015) later by measuring percentage of trees still infested, and also number of surviving S. exitiosa larvae per tree. Results indicated that S. carpocapsae provided significant curative control (e.g., .80% corrected control for the handgun application). In contrast, chlorpyrifos failed to reduce S. exitiosa infestations or number of surviving larvae. In most comparisons, no effect of nematode application method was detected; in one assessment, only the handgun and watering can methods reduced infestation. In conclusion, our study indicates that S. carpocapsae may be used as an effective curative measure for S. exitiosa infestations

    Mortality of native and invasive ladybirds co-infected by ectoparasitic and entomopathogenic fungi

    Get PDF
    Harmonia axyridis is an invasive alien ladybird in North America and Europe. Studies show that multiple natural enemies are using Ha. axyridis as a new host. However, thus far, no research has been undertaken to study the effects of simultaneous infection by multiple natural enemies on Ha. axyridis. We hypothesized that high thallus densities of the ectoparasitic fungus Hesperomyces virescens on a ladybird weaken the host's defenses, thereby making it more susceptible to infection by other natural enemies. We examined mortality of the North American-native Olla nu-nigrum and Ha. axyridis co-infected with He. virescens and an entomopathogenic fungus-either Beauveria bassiana or Metarhizium brunneum. Laboratory assays revealed that He. virescens- infected O. nu-nigrum individuals are more susceptible to entomopathogenic fungi, but Ha. axyridis does not suffer the same effects. This is in line with the enemy release hypothesis, which predicts that invasive alien species in new geographic areas experience reduced regulatory effects from natural enemies compared to native species. Considering our results, we can ask how He. virescens affects survival when confronted by other pathogens that previously had little impact on Ha. axyridis

    Transcriptional profiling of trait deterioration in the insect pathogenic nematode Heterorhabditis bacteriophora

    Get PDF
    Background: The success of a biological control agent depends on key traits, particularly reproductive potential, environmental tolerance, and ability to be cultured. These traits can deteriorate rapidly when the biological control agent is reared in culture. Trait deterioration under laboratory conditions has been widely documented in the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora (Hb) but the specific mechanisms behind these genetic processes remain unclear. This research investigates the molecular mechanisms of trait deterioration of two experimental lines of Hb, an inbred line (L5M) and its original parental line (OHB). We generated transcriptional profiles of two experimental lines of Hb, identified the differentially expressed genes (DEGs) and validated their differential expression in the deteriorated line. Results: An expression profiling study was performed between experimental lines L5M and OHB of Hb with probes for 15,220 ESTs from the Hb transcriptome. Microarray analysis showed 1,185 DEGs comprising of 469 down- and 716 up-regulated genes in trait deteriorated nematodes. Analysis of the DEGs showed that trait deterioration involves massive changes of the transcripts encoding enzymes involved in metabolism, signal transduction, virulence and longevity. We observed a pattern of reduced expression of enzymes related to primary metabolic processes and induced secondary metabolism. Expression of sixteen DEGs in trait deteriorated nematodes was validated by quantitative reverse transcription-PCR (qRT-PCR) which revealed similar expression kinetics for all the genes tested as shown by microarray. Conclusion: As the most closely related major entomopathogen to C. elegans, Hb provides an attractive near-term application for using a model organism to better understand interspecies interactions and to enhance our understanding of the mechanisms underlying trait deterioration in biological control agents. This information could also be used to improve the beneficial traits of biological control agents and better understand fundamental aspects of nematode parasitism and mutualism

    Prospects of entomopathogens in post-harvest integrated pest management: Presentation

    No full text
    In these exploratory experiments, entomopathogenic nematodes and fungi were investigated for the management of the populations of postharvest insect pests. Nematodes were screened for pathogenicity to Plodia interpunctella (Hübner), while nematodes and fungi were investigated for virulence to the maize weevil, Sitophilus zeamais (Motschulsky). Adults and larvae of P. interpunctellea were screened for susceptibility to the following six nematodes: Heterorhabitis bacteriophora Poinar (HP88, Lewiston and Oswego strains); H. indica Poinar, Karunakar and David (Homl strain); H. marelatus Liu and Berry (Point Reyes strain); H. megidis Poinar, Jackson, and Klein (UK211 strain); and H. zealandica Poinar (NZH3 strain). The nematodes that had the highest virulence to larvae and adults of P. interpunctellea were H. indica, H. megidis, and H. marelatus. Six strains of nematodes were studied, namely H. bacteriophora, H. indica, H. georgiana (K22), Steinernema feltiae SN and S. carpocapsae. All strains of fungi, Beauveria bassiana (GHA) and Metarhizium brunneum (F52) were evaluated for infectivity to adults of S. zeamais. The two strains of Steinernematidae nematodes and a strain of fungus, B. bassiana were found to cause significant mortality of the weevils compared to the rest of the entomopathogens and the control. To demonstrate the practical application of entomopathogens, wettable dust of B. bassiana were dispensed on jute bags after which weevils were exposed to the treated surfaces for 30 min. The exposed weevils recorded between 90 to 100% mortality 14-d after exposure. Additional study demonstrated that the parasitoid, Habrobracon hebetor (Say) (Hymenoptera: Braconidae) could be integrated with entomopathogenic nematodes. These experiments demonstrate the potential usefulness of entomopathogens in the management of stored product Lepidopteran and Coleopteran pests.In these exploratory experiments, entomopathogenic nematodes and fungi were investigated for the management of the populations of postharvest insect pests. Nematodes were screened for pathogenicity to Plodia interpunctella (Hübner), while nematodes and fungi were investigated for virulence to the maize weevil, Sitophilus zeamais (Motschulsky). Adults and larvae of P. interpunctellea were screened for susceptibility to the following six nematodes: Heterorhabitis bacteriophora Poinar (HP88, Lewiston and Oswego strains); H. indica Poinar, Karunakar and David (Homl strain); H. marelatus Liu and Berry (Point Reyes strain); H. megidis Poinar, Jackson, and Klein (UK211 strain); and H. zealandica Poinar (NZH3 strain). The nematodes that had the highest virulence to larvae and adults of P. interpunctellea were H. indica, H. megidis, and H. marelatus. Six strains of nematodes were studied, namely H. bacteriophora, H. indica, H. georgiana (K22), Steinernema feltiae SN and S. carpocapsae. All strains of fungi, Beauveria bassiana (GHA) and Metarhizium brunneum (F52) were evaluated for infectivity to adults of S. zeamais. The two strains of Steinernematidae nematodes and a strain of fungus, B. bassiana were found to cause significant mortality of the weevils compared to the rest of the entomopathogens and the control. To demonstrate the practical application of entomopathogens, wettable dust of B. bassiana were dispensed on jute bags after which weevils were exposed to the treated surfaces for 30 min. The exposed weevils recorded between 90 to 100% mortality 14-d after exposure. Additional study demonstrated that the parasitoid, Habrobracon hebetor (Say) (Hymenoptera: Braconidae) could be integrated with entomopathogenic nematodes. These experiments demonstrate the potential usefulness of entomopathogens in the management of stored product Lepidopteran and Coleopteran pests
    corecore