2,107 research outputs found
Model for Spreading of Liquid Monolayers
Manipulating fluids at the nanoscale within networks of channels or chemical
lanes is a crucial challenge in developing small scale devices to be used in
microreactors or chemical sensors. In this context, ultra-thin (i.e.,
monolayer) films, experimentally observed in spreading of nano-droplets or upon
extraction from reservoirs in capillary rise geometries, represent an extreme
limit which is of physical and technological relevance since the dynamics is
governed solely by capillary forces. In this work we use kinetic Monte Carlo
(KMC) simulations to analyze in detail a simple, but realistic model proposed
by Burlatsky \textit{et al.} \cite{Burlatsky_prl96,Oshanin_jml} for the
two-dimensional spreading on homogeneous substrates of a fluid monolayer which
is extracted from a reservoir. Our simulations confirm the previously predicted
time-dependence of the spreading, , with as
the average position of the advancing edge at time , and they reveal a
non-trivial dependence of the prefactor on the strength of
inter-particle attraction and on the fluid density at the reservoir as
well as an -dependent spatial structure of the density profile of the
monolayer. The asymptotic density profile at long time and large spatial scale
is carefully analyzed within the continuum limit. We show that including the
effect of correlations in an effective manner into the standard mean-field
description leads to predictions both for the value of the threshold
interaction above which phase segregation occurs and for the density profiles
in excellent agreement with KMC simulations results.Comment: 21 pages, 9 figures, submitted to Phys. Rev.
Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence
We estimate the diffuse supernova neutrino background (DSNB) using the recent
progenitor-dependent, long-term supernova simulations from the Basel group and
including neutrino oscillations at several post-bounce times. Assuming
multi-angle matter suppression of collective effects during the accretion
phase, we find that oscillation effects are dominated by the matter-driven MSW
resonances, while neutrino-neutrino collective effects contribute at the 5-10%
level. The impact of the neutrino mass hierarchy, of the time-dependent
neutrino spectra and of the diverse progenitor star population is 10% or less,
small compared to the uncertainty of at least 25% of the normalization of the
supernova rate. Therefore, assuming that the sign of the neutrino mass
hierarchy will be determined within the next decade, the future detection of
the DSNB will deliver approximate information on the MSW-oscillated neutrino
spectra. With a reliable model for neutrino emission, its detection will be a
powerful instrument to provide complementary information on the star formation
rate and for learning about stellar physics.Comment: 19 pages, including 4 figures and 1 table. Clarifying paragraphs
added; results unchanged. Matches published version in JCA
The effects of nonextensive statistics on fluctuations investigated in event-by-event analysis of data
We investigate the effect of nonextensive statistics as applied to the
chemical fluctuations in high-energy nuclear collisions discussed recently
using the event-by-event analysis of data. It turns out that very minuite
nonextensitivity changes drastically the expected experimental output for the
fluctuation measure. This results is in agreement with similar studies of
nonextensity performed recently for the transverse momentum fluctuations in the
same reactions.Comment: Revised version, to be published in J. Phys. G (2000
Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence
Stability properties and mode signature for equilibria of a model of electron
temperature gradient (ETG) driven turbulence are investigated by Hamiltonian
techniques. After deriving the infinite families of Casimir invariants,
associated with the noncanonical Poisson bracket of the model, a sufficient
condition for stability is obtained by means of the Energy-Casimir method. Mode
signature is then investigated for linear motions about homogeneous equilibria.
Depending on the sign of the equilibrium "translated" pressure gradient, stable
equilibria can either be energy stable, i.e.\ possess definite linearized
perturbation energy (Hamiltonian), or spectrally stable with the existence of
negative energy modes (NEMs). The ETG instability is then shown to arise
through a Kre\u{\i}n-type bifurcation, due to the merging of a positive and a
negative energy mode, corresponding to two modified drift waves admitted by the
system. The Hamiltonian of the linearized system is then explicitly transformed
into normal form, which unambiguously defines mode signature. In particular,
the fast mode turns out to always be a positive energy mode (PEM), whereas the
energy of the slow mode can have either positive or negative sign
Uncovering the overlapping community structure of complex networks in nature and society
Many complex systems in nature and society can be described in terms of
networks capturing the intricate web of connections among the units they are
made of. A key question is how to interpret the global organization of such
networks as the coexistence of their structural subunits (communities)
associated with more highly interconnected parts. Identifying these a priori
unknown building blocks (such as functionally related proteins, industrial
sectors and groups of people) is crucial to the understanding of the structural
and functional properties of networks. The existing deterministic methods used
for large networks find separated communities, whereas most of the actual
networks are made of highly overlapping cohesive groups of nodes. Here we
introduce an approach to analysing the main statistical features of the
interwoven sets of overlapping communities that makes a step towards uncovering
the modular structure of complex systems. After defining a set of new
characteristic quantities for the statistics of communities, we apply an
efficient technique for exploring overlapping communities on a large scale. We
find that overlaps are significant, and the distributions we introduce reveal
universal features of networks. Our studies of collaboration, word-association
and protein interaction graphs show that the web of communities has non-trivial
correlations and specific scaling properties.Comment: The free academic research software, CFinder, used for the
publication is available at the website of the publication:
http://angel.elte.hu/clusterin
Transition Radiation Spectra of Electrons from 1 to 10 GeV/c in Regular and Irregular Radiators
We present measurements of the spectral distribution of transition radiation
generated by electrons of momentum 1 to 10 GeV/c in different radiator types.
We investigate periodic foil radiators and irregular foam and fiber materials.
The transition radiation photons are detected by prototypes of the drift
chambers to be used in the Transition Radiation Detector (TRD) of the ALICE
experiment at CERN, which are filled with a Xe, CO2 (15 %) mixture. The
measurements are compared to simulations in order to enhance the quantitative
understanding of transition radiation production, in particular the momentum
dependence of the transition radiation yield.Comment: 18 pages, 15 figures, submitted to Nucl. Instr. Meth. Phys. Res.
Particle emission following Coulomb excitation in ultrarelativistic heavy-ion collisions
We study nuclear reactions induced by virtual photons associated with
Lorentz-boosted Coulomb fields of ultrarelativistic heavy ions. Evaporation,
fission and multifragmentation mechanisms are included in a new RELDIS code,
which describes the deexcitation of residual nuclei formed after single and
double photon absorption in peripheral heavy-ion collisions. Partial cross
sections for different dissociation channels, including the multiple neutron
emission ones, are calculated and compared with data when available. Rapidity
and transverse momentum distributions of nucleons, nuclear fragments and pions,
produced electromagnetically, are also calculated. These results provide
important information for designing large-rapidity detectors and zero-degree
calorimeters at RHIC and LHC. The electromagnetic dissociation of nuclei
imposes some constrains on the investigation of exotic particle production in
gamma-gamma fusion reactions.Comment: 26 LaTeX pages including 8 figures, uses epsf.st
Charged particle production in the Pb+Pb system at 158 GeV/c per nucleon
Charged particle multiplicities from high multiplicity central interactions
of 158 GeV/nucleon Pb ions with Pb target nuclei have been measured in the
central and far forward projectile spectator regions using emulsion chambers.
Multiplicities are significantly lower than predicted by Monte Carlo
simulations. We examine the shape of the pseudorapidity distribution and its
dependence on centrality in detail.Comment: 17 pages text plus 12 figures in postscript 12/23/99 -- Add TeX
version of sourc
Computational Methodology for Optimal Design of Additive Layer Manufactured Turbine Bracket
The design of critical components for aircrafts, cars or any other kind of machinery today is typically subject to two conflicting objectives, namely the maximisation of strength and the minimisation of weight. The conflicting nature of these two objectives makes it impossible to obtain a design that is optimal for both. The most common approach aiming for a single objective optimisation problem in aerospace is to maintain the weight minimisation as the objective, whilst setting strength requirements as constraints to be satisfied. However, manufacturing methods incorporate additional restrictions for an optimal design to be considered feasible, even when satisfying all constraints in the formulation of the optimisation problem. In this context, Additive Layer Manufacturing adds remarkably higher flexibility to the manufacturability of shape designs when compared with traditional processes. It is fair to note, however, that there are still some restrictions such as the infeasibility of building unsupported layers forming angles smaller than 45 degrees with respect to the underlying one. Nowadays, it is common practice to use a set of software tools to deal with these kinds of problems, namely Computer Aided Design (CAD), Finite Element Analysis (FEA), and optimisation packages. The adequate use of these tools results in an increase in efficiency and quality of the final product. In this paper, a case study was undertaken consisting of a turbine bracket from a General Electric challenge. A computational methodology is used, which consists of a topology optimisation considering an isotropic material at first instance, followed by the manual refinement of the resulting shape taking into account the manufacturability requirements. To this end, we used SolidWorks®2013 for the CAD, Ansys Workbench®14.0 for the FEA, and HyperWorks®11 for the topology optimisation. A future methodology will incorporate the automation of the shape optimisation stage, and perhaps the inclusion of the manufacturability restriction within the optimisation formulation
- …