269 research outputs found

    Quality of medication use in primary care - mapping the problem, working to a solution: a systematic review of the literature

    Get PDF
    Background: The UK, USA and the World Health Organization have identified improved patient safety in healthcare as a priority. Medication error has been identified as one of the most frequent forms of medical error and is associated with significant medical harm. Errors are the result of the systems that produce them. In industrial settings, a range of systematic techniques have been designed to reduce error and waste. The first stage of these processes is to map out the whole system and its reliability at each stage. However, to date, studies of medication error and solutions have concentrated on individual parts of the whole system. In this paper we wished to conduct a systematic review of the literature, in order to map out the medication system with its associated errors and failures in quality, to assess the strength of the evidence and to use approaches from quality management to identify ways in which the system could be made safer. Methods: We mapped out the medicines management system in primary care in the UK. We conducted a systematic literature review in order to refine our map of the system and to establish the quality of the research and reliability of the system. Results: The map demonstrated that the proportion of errors in the management system for medicines in primary care is very high. Several stages of the process had error rates of 50% or more: repeat prescribing reviews, interface prescribing and communication and patient adherence. When including the efficacy of the medicine in the system, the available evidence suggested that only between 4% and 21% of patients achieved the optimum benefit from their medication. Whilst there were some limitations in the evidence base, including the error rate measurement and the sampling strategies employed, there was sufficient information to indicate the ways in which the system could be improved, using management approaches. The first step to improving the overall quality would be routine monitoring of adherence, clinical effectiveness and hospital admissions. Conclusion: By adopting the whole system approach from a management perspective we have found where failures in quality occur in medication use in primary care in the UK, and where weaknesses occur in the associated evidence base. Quality management approaches have allowed us to develop a coherent change and research agenda in order to tackle these, so far, fairly intractable problems

    Contrast medium-induced nephropathy. Aspects on incidence, consequences, risk factors and prevention

    Get PDF
    Contrast media-induced nephropathy (CIN) is a well-known complication of radiological examinations employing iodine contrast media (I-CM). The rapid development and frequent use of coronary interventions and multi-channel detector computed tomography with concomitant administration of relatively large doses of I-CM has contributed to an increasing number of CIN cases during the last few years. Reduced renal function, especially when caused by diabetic nephropathy or renal arteriosclerosis, in combination with dehydration, congestive heart failure, hypotension, and administration of nephrotoxic drugs are risk factors for the development of CIN. When CM-based examinations cannot be replaced by other techniques in patients at risk of CIN, focus should be directed towards analysis of number and type of risk factors, adequate estimation of GFR, institution of proper preventive measures including hydration and post-procedural observation combined with surveillance of serum creatinine for 1-3 days. For the radiologist, there are several steps to consider in order to minimise the risk for CIN: use of “low-“ or “iso-osmolar” I-CM and dosing the I-CM in relation to GFR and body weight being the most important as well as utilizing radiographic techniques to keep the I-CM dose in gram iodine as low as possible below the numerical value of estimated GFR. There is as yet no pharmacological prevention that has been proven to be effective

    TMFoldRec: a statistical potential-based transmembrane protein fold recognition tool.

    Get PDF
    BACKGROUND: Transmembrane proteins (TMPs) are the key components of signal transduction, cell-cell adhesion and energy and material transport into and out from the cells. For the deep understanding of these processes, structure determination of transmembrane proteins is indispensable. However, due to technical difficulties, only a few transmembrane protein structures have been determined experimentally. Large-scale genomic sequencing provides increasing amounts of sequence information on the proteins and whole proteomes of living organisms resulting in the challenge of bioinformatics; how the structural information should be gained from a sequence. RESULTS: Here, we present a novel method, TMFoldRec, for fold prediction of membrane segments in transmembrane proteins. TMFoldRec based on statistical potentials was tested on a benchmark set containing 124 TMP chains from the PDBTM database. Using a 10-fold jackknife method, the native folds were correctly identified in 77 % of the cases. This accuracy overcomes the state-of-the-art methods. In addition, a key feature of TMFoldRec algorithm is the ability to estimate the reliability of the prediction and to decide with an accuracy of 70 %, whether the obtained, lowest energy structure is the native one. CONCLUSION: These results imply that the membrane embedded parts of TMPs dictate the TM structures rather than the soluble parts. Moreover, predictions with reliability scores make in this way our algorithm applicable for proteome-wide analyses. AVAILABILITY: The program is available upon request for academic use

    ATPase Subdomain IA Is a Mediator of Interdomain Allostery in Hsp70 Molecular Chaperones

    Get PDF
    The versatile functions of the heat shock protein 70 (Hsp70) family of molecular chaperones rely on allosteric interactions between their nucleotide-binding and substrate-binding domains, NBD and SBD. Understanding the mechanism of interdomain allostery is essential to rational design of Hsp70 modulators. Yet, despite significant progress in recent years, how the two Hsp70 domains regulate each other's activity remains elusive. Covariance data from experiments and computations emerged in recent years as valuable sources of information towards gaining insights into the molecular events that mediate allostery. In the present study, conservation and covariance properties derived from both sequence and structural dynamics data are integrated with results from Perturbation Response Scanning and in vivo functional assays, so as to establish the dynamical basis of interdomain signal transduction in Hsp70s. Our study highlights the critical roles of SBD residues D481 and T417 in mediating the coupled motions of the two domains, as well as that of G506 in enabling the movements of the α-helical lid with respect to the β-sandwich. It also draws attention to the distinctive role of the NBD subdomains: Subdomain IA acts as a key mediator of signal transduction between the ATP- and substrate-binding sites, this function being achieved by a cascade of interactions predominantly involving conserved residues such as V139, D148, R167 and K155. Subdomain IIA, on the other hand, is distinguished by strong coevolutionary signals (with the SBD) exhibited by a series of residues (D211, E217, L219, T383) implicated in DnaJ recognition. The occurrence of coevolving residues at the DnaJ recognition region parallels the behavior recently observed at the nucleotide-exchange-factor recognition region of subdomain IIB. These findings suggest that Hsp70 tends to adapt to co-chaperone recognition and activity via coevolving residues, whereas interdomain allostery, critical to chaperoning, is robustly enabled by conserved interactions. © 2014 General et al

    Quantitative trait loci mapping reveals candidate pathways regulating cell cycle duration in Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elevated parasite biomass in the human red blood cells can lead to increased malaria morbidity. The genes and mechanisms regulating growth and development of <it>Plasmodium </it><it>falciparum </it>through its erythrocytic cycle are not well understood. We previously showed that strains HB3 and Dd2 diverge in their proliferation rates, and here use quantitative trait loci mapping in 34 progeny from a cross between these parent clones along with integrative bioinformatics to identify genetic loci and candidate genes that control divergences in cell cycle duration.</p> <p>Results</p> <p>Genetic mapping of cell cycle duration revealed a four-locus genetic model, including a major genetic effect on chromosome 12, which accounts for 75% of the inherited phenotype variation. These QTL span 165 genes, the majority of which have no predicted function based on homology. We present a method to systematically prioritize candidate genes using the extensive sequence and transcriptional information available for the parent lines. Putative functions were assigned to the prioritized genes based on protein interaction networks and expression eQTL from our earlier study. DNA metabolism or antigenic variation functional categories were enriched among our prioritized candidate genes. Genes were then analyzed to determine if they interact with cyclins or other proteins known to be involved in the regulation of cell cycle.</p> <p>Conclusions</p> <p>We show that the divergent proliferation rate between a drug resistant and drug sensitive parent clone is under genetic regulation and is segregating as a complex trait in 34 progeny. We map a major locus along with additional secondary effects, and use the wealth of genome data to identify key candidate genes. Of particular interest are a nucleosome assembly protein (PFL0185c), a Zinc finger transcription factor (PFL0465c) both on chromosome 12 and a ribosomal protein L7Ae-related on chromosome 4 (PFD0960c).</p

    Changing Hydrozoan Bauplans by Silencing Hox-Like Genes

    Get PDF
    Regulatory genes of the Antp class have been a major factor for the invention and radiation of animal bauplans. One of the most diverse animal phyla are the Cnidaria, which are close to the root of metazoan life and which often appear in two distinct generations and a remarkable variety of body forms. Hox-like genes have been known to be involved in axial patterning in the Cnidaria and have been suspected to play roles in the genetic control of many of the observed bauplan changes. Unfortunately RNAi mediated gene silencing studies have not been satisfactory for marine invertebrate organisms thus far. No direct evidence supporting Hox-like gene induced bauplan changes in cnidarians have been documented as of yet. Herein, we report a protocol for RNAi transfection of marine invertebrates and demonstrate that knock downs of Hox-like genes in Cnidaria create substantial bauplan alterations, including the formation of multiple oral poles (“heads”) by Cnox-2 and Cnox-3 inhibition, deformation of the main body axis by Cnox-5 inhibition and duplication of tentacles by Cnox-1 inhibition. All phenotypes observed in the course of the RNAi studies were identical to those obtained by morpholino antisense oligo experiments and are reminiscent of macroevolutionary bauplan changes. The reported protocol will allow routine RNAi studies in marine invertebrates to be established

    Alectinib versus crizotinib in untreated ALK-positive non–small-cell lung cancer

    Get PDF
    Alectinib, a highly selective inhibitor of anaplastic lymphoma kinase (ALK), has shown systemic and central nervous system (CNS) efficacy in the treatment of ALK-positive non-small-cell lung cancer (NSCLC). We investigated alectinib as compared with crizotinib in patients with previously untreated, advanced ALK-positive NSCLC, including those with asymptomatic CNS disease. In a randomized, open-label, phase 3 trial, we randomly assigned 303 patients with previously untreated, advanced ALK-positive NSCLC to receive either alectinib (600 mg twice daily) or crizotinib (250 mg twice daily). The primary end point was investigator-assessed progression-free survival. Secondary end points were independent review committee-assessed progression-free survival, time to CNS progression, objective response rate, and overall survival. During a median follow-up of 17.6 months (crizotinib) and 18.6 months (alectinib), an event of disease progression or death occurred in 62 of 152 patients (41%) in the alectinib group and 102 of 151 patients (68%) in the crizotinib group. The rate of investigator-assessed progression-free survival was significantly higher with alectinib than with crizotinib (12-month event-free survival rate, 68.4% [95% confidence interval (CI), 61.0 to 75.9] with alectinib vs. 48.7% [95% CI, 40.4 to 56.9] with crizotinib; hazard ratio for disease progression or death, 0.47 [95% CI, 0.34 to 0.65]; P&lt;0.001); the median progression-free survival with alectinib was not reached. The results for independent review committee-assessed progression-free survival were consistent with those for the primary end point. A total of 18 patients (12%) in the alectinib group had an event of CNS progression, as compared with 68 patients (45%) in the crizotinib group (cause-specific hazard ratio, 0.16; 95% CI, 0.10 to 0.28; P&lt;0.001). A response occurred in 126 patients in the alectinib group (response rate, 82.9%; 95% CI, 76.0 to 88.5) and in 114 patients in the crizotinib group (response rate, 75.5%; 95% CI, 67.8 to 82.1) (P=0.09). Grade 3 to 5 adverse events were less frequent with alectinib (41% vs. 50% with crizotinib). As compared with crizotinib, alectinib showed superior efficacy and lower toxicity in primary treatment of ALK-positive NSCLC. (Funded by F. Hoffmann-La Roche; ALEX ClinicalTrials.gov number, NCT02075840 .)

    Integrated Analysis of Residue Coevolution and Protein Structure in ABC Transporters

    Get PDF
    Intraprotein side chain contacts can couple the evolutionary process of amino acid substitution at one position to that at another. This coupling, known as residue coevolution, may vary in strength. Conserved contacts thus not only define 3-dimensional protein structure, but also indicate which residue-residue interactions are crucial to a protein’s function. Therefore, prediction of strongly coevolving residue-pairs helps clarify molecular mechanisms underlying function. Previously, various coevolution detectors have been employed separately to predict these pairs purely from multiple sequence alignments, while disregarding available structural information. This study introduces an integrative framework that improves the accuracy of such predictions, relative to previous approaches, by combining multiple coevolution detectors and incorporating structural contact information. This framework is applied to the ABC-B and ABC-C transporter families, which include the drug exporter P-glycoprotein involved in multidrug resistance of cancer cells, as well as the CFTR chloride channel linked to cystic fibrosis disease. The predicted coevolving pairs are further analyzed based on conformational changes inferred from outward- and inward-facing transporter structures. The analysis suggests that some pairs coevolved to directly regulate conformational changes of the alternating-access transport mechanism, while others to stabilize rigid-body-like components of the protein structure. Moreover, some identified pairs correspond to residues previously implicated in cystic fibrosis
    corecore