384 research outputs found

    The Thermopower of Quantum Chaos

    Full text link
    The thermovoltage of a chaotic quantum dot is measured using a current heating technique. The fluctuations in the thermopower as a function of magnetic field and dot shape display a non-Gaussian distribution, in agreement with simulations using Random Matrix Theory. We observe no contributions from weak localization or short trajectories in the thermopower.Comment: 4 pages, 3 figures, corrected: accidently omitted author in the Authors list, here (not in the article

    Effect of incoherent scattering on shot noise correlations in the quantum Hall regime

    Full text link
    We investigate the effect of incoherent scattering in a Hanbury Brown and Twiss situation with electrons in edge states of a three-terminal conductor submitted to a strong perpendicular magnetic field. The modelization of incoherent scattering is performed by introducing an additional voltage probe through which the current is kept equal to zero which causes voltage fluctuations at this probe. It is shown that inelastic scattering can lead in this framework to positive correlations, whereas correlations remain always negative for quasi-elastic scattering.Comment: 5 pages latex, 5 eps figure

    Charge Fluctuations in Quantum Point Contacts and Chaotic Cavities in the Presence of Transport

    Full text link
    We analyze the frequency-dependent current fluctuations induced into a gate near a quantum point contact or a quantum chaotic cavity. We use a current and charge conserving, effective scattering approach in which interactions are treated in random phase approximation. The current fluctuations measured at a nearby gate, coupled capacitively to the conductor, are determined by the screened charge fluctuations of the conductor. Both the equilibrium and the non-equilibrium current noise at the gate can be expressed with the help of resistances which are related to the charge dynamics on the conductor. We evaluate these resistances for a point contact and determine their distributions for an ensemble of chaotic cavities. For a quantum point contact these resistances exhibit pronounced oscillations with the opening of new channels. For a chaotic cavity coupled to one channel point contacts the charge relaxation resistance shows a broad distribution between 1/4 and 1/2 of a resistance quantum. The non-equilibrium resistance exhibits a broad distribution between zero and 1/4 of a resistance quantum.Comment: 9 pages, two-column Revtex, 6 figures include

    Semi-classical Theory of Conductance and Noise in Open Chaotic Cavities

    Full text link
    Conductance and shot noise of an open cavity with diffusive boundary scattering are calculated within the Boltzmann-Langevin approach. In particular, conductance contains a non-universal geometric contribution, originating from the presence of open contacts. Subsequently, universal expressions for multi-terminal conductance and noise valid for all chaotic cavities are obtained classically basing on the fact that the distribution function in the cavity depends only on energy and using the principle of minimal correlations.Comment: 4 pages, 1 .eps figur

    Electron interference and entanglement in coupled 1D systems with noise

    Full text link
    We estimate the role of noise in the formation of entanglement and in the appearance of single- and two-electron interference in systems of coupled one-dimensional channels semiconductors. Two cases are considered: a single-particle interferometer and a two-particle interferometer exploiting Coulomb interaction. In both of them, environmental noise yields a randomization of the carrier phases. Our results assess how that the complementarity relation linking single-particle behavior to nonlocal quantities, such as entanglement and environment-induced decoherence, acts in electron interferometry. We show that, in a experimental implementation of the setups examined, one- and two-electron detection probability at the output drains can be used to evaluate the decoherence phenomena and the degree of entanglement.Comment: 12 pages, 6 figures. v2: added some references and corrected tex

    A prospective study on rapid exome sequencing as a diagnostic test for multiple congenital anomalies on fetal ultrasound

    Get PDF
    Objective: Conventional genetic tests (quantitative fluorescent-PCR [QF-PCR] and single nucleotide polymorphism-array) only diagnose ~40% of fetuses showing ultrasound abnormalities. Rapid exome sequencing (rES) may improve this diagnostic yield, but includes challenges such as uncertainties in fetal phenotyping, variant interpretation, incidental unsolicited findings, and rapid turnaround times. In this study, we implemented rES in prenatal care to increase diagnostic yield. Methods: We prospectively studied 55 fetuses. Inclusion criteria were: (a) two or more independent major fetal anomalies, (b) hydrops fetalis or bilateral renal cysts alone, or (c) one major fetal anomaly and a first-degree relative with the same anomaly. In addition to conventional genetic tests, we performed trio rES analysis using a custom virtual gene panel of ~3850 Online Mendelian Inheritance in Man (OMIM) genes. Results: We established a genetic rES-based diagnosis in 8 out of 23 fetuses (35%) without QF-PCR or array abnormalities. Diagnoses included MIRAGE (SAMD9), Zellweger (PEX1), Walker-Warburg (POMGNT1), Noonan (PTNP11), Kabuki (KMT2D), and CHARGE (CHD7) syndrome and two cases of Osteogenesis Imperfecta type 2 (COL1A1). In six cases, rES diagnosis aided perinatal management. The median turnaround time was 14 (range 8-20) days. Conclusion: Implementing rES as a routine test in the prenatal setting is challenging but technically feasible, with a promising diagnostic yield and significant clinical relevance

    Reflection and transmission of waves in surface-disordered waveguides

    Get PDF
    The reflection and transmission amplitudes of waves in disordered multimode waveguides are studied by means of numerical simulations based on the invariant embedding equations. In particular, we analyze the influence of surface-type disorder on the behavior of the ensemble average and fluctuations of the reflection and transmission coefficients, reflectance, transmittance, and conductance. Our results show anomalous effects stemming from the combination of mode dispersion and rough surface scattering: For a given waveguide length, the larger the mode transverse momentum is, the more strongly is the mode scattered. These effects manifest themselves in the mode selectivity of the transmission coefficients, anomalous backscattering enhancement, and speckle pattern both in reflection and transmission, reflectance and transmittance, and also in the conductance and its universal fluctuations. It is shown that, in contrast to volume impurities, surface scattering in quasi-one-dimensional structures (waveguides) gives rise to the coexistence of the ballistic, diffusive, and localized regimes within the same sample.Comment: LaTeX (REVTeX), 12 pages with 14 EPS figures (epsf macro), minor change

    Non-perturbative calculation of the probability distribution of plane-wave transmission through a disordered waveguide

    Get PDF
    A non-perturbative random-matrix theory is applied to the transmission of a monochromatic scalar wave through a disordered waveguide. The probability distributions of the transmittances T_{mn} and T_n=\sum_m T_{mn} of an incident mode n are calculated in the thick-waveguide limit, for broken time-reversal symmetry. A crossover occurs from Rayleigh or Gaussian statistics in the diffusive regime to lognormal statistics in the localized regime. A qualitatively different crossover occurs if the disordered region is replaced by a chaotic cavity. ***Submitted to Physical Review E.***Comment: 7 pages, REVTeX-3.0, 5 postscript figures appended as self-extracting archive. A complete postscript file with figures and text (4 pages) is available from http://rulgm4.LeidenUniv.nl/preprints.htm
    corecore