384 research outputs found
The Thermopower of Quantum Chaos
The thermovoltage of a chaotic quantum dot is measured using a current
heating technique. The fluctuations in the thermopower as a function of
magnetic field and dot shape display a non-Gaussian distribution, in agreement
with simulations using Random Matrix Theory. We observe no contributions from
weak localization or short trajectories in the thermopower.Comment: 4 pages, 3 figures, corrected: accidently omitted author in the
Authors list, here (not in the article
Effect of incoherent scattering on shot noise correlations in the quantum Hall regime
We investigate the effect of incoherent scattering in a Hanbury Brown and
Twiss situation with electrons in edge states of a three-terminal conductor
submitted to a strong perpendicular magnetic field. The modelization of
incoherent scattering is performed by introducing an additional voltage probe
through which the current is kept equal to zero which causes voltage
fluctuations at this probe. It is shown that inelastic scattering can lead in
this framework to positive correlations, whereas correlations remain always
negative for quasi-elastic scattering.Comment: 5 pages latex, 5 eps figure
Charge Fluctuations in Quantum Point Contacts and Chaotic Cavities in the Presence of Transport
We analyze the frequency-dependent current fluctuations induced into a gate
near a quantum point contact or a quantum chaotic cavity. We use a current and
charge conserving, effective scattering approach in which interactions are
treated in random phase approximation. The current fluctuations measured at a
nearby gate, coupled capacitively to the conductor, are determined by the
screened charge fluctuations of the conductor. Both the equilibrium and the
non-equilibrium current noise at the gate can be expressed with the help of
resistances which are related to the charge dynamics on the conductor. We
evaluate these resistances for a point contact and determine their
distributions for an ensemble of chaotic cavities. For a quantum point contact
these resistances exhibit pronounced oscillations with the opening of new
channels. For a chaotic cavity coupled to one channel point contacts the charge
relaxation resistance shows a broad distribution between 1/4 and 1/2 of a
resistance quantum. The non-equilibrium resistance exhibits a broad
distribution between zero and 1/4 of a resistance quantum.Comment: 9 pages, two-column Revtex, 6 figures include
Semi-classical Theory of Conductance and Noise in Open Chaotic Cavities
Conductance and shot noise of an open cavity with diffusive boundary
scattering are calculated within the Boltzmann-Langevin approach. In
particular, conductance contains a non-universal geometric contribution,
originating from the presence of open contacts. Subsequently, universal
expressions for multi-terminal conductance and noise valid for all chaotic
cavities are obtained classically basing on the fact that the distribution
function in the cavity depends only on energy and using the principle of
minimal correlations.Comment: 4 pages, 1 .eps figur
Electron interference and entanglement in coupled 1D systems with noise
We estimate the role of noise in the formation of entanglement and in the
appearance of single- and two-electron interference in systems of coupled
one-dimensional channels semiconductors. Two cases are considered: a
single-particle interferometer and a two-particle interferometer exploiting
Coulomb interaction. In both of them, environmental noise yields a
randomization of the carrier phases. Our results assess how that the
complementarity relation linking single-particle behavior to nonlocal
quantities, such as entanglement and environment-induced decoherence, acts in
electron interferometry. We show that, in a experimental implementation of the
setups examined, one- and two-electron detection probability at the output
drains can be used to evaluate the decoherence phenomena and the degree of
entanglement.Comment: 12 pages, 6 figures. v2: added some references and corrected tex
A prospective study on rapid exome sequencing as a diagnostic test for multiple congenital anomalies on fetal ultrasound
Objective: Conventional genetic tests (quantitative fluorescent-PCR [QF-PCR] and single nucleotide polymorphism-array) only diagnose ~40% of fetuses showing ultrasound abnormalities. Rapid exome sequencing (rES) may improve this diagnostic yield, but includes challenges such as uncertainties in fetal phenotyping, variant interpretation, incidental unsolicited findings, and rapid turnaround times. In this study, we implemented rES in prenatal care to increase diagnostic yield. Methods: We prospectively studied 55 fetuses. Inclusion criteria were: (a) two or more independent major fetal anomalies, (b) hydrops fetalis or bilateral renal cysts alone, or (c) one major fetal anomaly and a first-degree relative with the same anomaly. In addition to conventional genetic tests, we performed trio rES analysis using a custom virtual gene panel of ~3850 Online Mendelian Inheritance in Man (OMIM) genes. Results: We established a genetic rES-based diagnosis in 8 out of 23 fetuses (35%) without QF-PCR or array abnormalities. Diagnoses included MIRAGE (SAMD9), Zellweger (PEX1), Walker-Warburg (POMGNT1), Noonan (PTNP11), Kabuki (KMT2D), and CHARGE (CHD7) syndrome and two cases of Osteogenesis Imperfecta type 2 (COL1A1). In six cases, rES diagnosis aided perinatal management. The median turnaround time was 14 (range 8-20) days. Conclusion: Implementing rES as a routine test in the prenatal setting is challenging but technically feasible, with a promising diagnostic yield and significant clinical relevance
Reflection and transmission of waves in surface-disordered waveguides
The reflection and transmission amplitudes of waves in disordered multimode
waveguides are studied by means of numerical simulations based on the invariant
embedding equations. In particular, we analyze the influence of surface-type
disorder on the behavior of the ensemble average and fluctuations of the
reflection and transmission coefficients, reflectance, transmittance, and
conductance. Our results show anomalous effects stemming from the combination
of mode dispersion and rough surface scattering: For a given waveguide length,
the larger the mode transverse momentum is, the more strongly is the mode
scattered. These effects manifest themselves in the mode selectivity of the
transmission coefficients, anomalous backscattering enhancement, and speckle
pattern both in reflection and transmission, reflectance and transmittance, and
also in the conductance and its universal fluctuations. It is shown that, in
contrast to volume impurities, surface scattering in quasi-one-dimensional
structures (waveguides) gives rise to the coexistence of the ballistic,
diffusive, and localized regimes within the same sample.Comment: LaTeX (REVTeX), 12 pages with 14 EPS figures (epsf macro), minor
change
Non-perturbative calculation of the probability distribution of plane-wave transmission through a disordered waveguide
A non-perturbative random-matrix theory is applied to the transmission of a
monochromatic scalar wave through a disordered waveguide. The probability
distributions of the transmittances T_{mn} and T_n=\sum_m T_{mn} of an incident
mode n are calculated in the thick-waveguide limit, for broken time-reversal
symmetry. A crossover occurs from Rayleigh or Gaussian statistics in the
diffusive regime to lognormal statistics in the localized regime. A
qualitatively different crossover occurs if the disordered region is replaced
by a chaotic cavity. ***Submitted to Physical Review E.***Comment: 7 pages, REVTeX-3.0, 5 postscript figures appended as self-extracting
archive. A complete postscript file with figures and text (4 pages) is
available from http://rulgm4.LeidenUniv.nl/preprints.htm
- …