429 research outputs found

    Generalized Contour Dynamics: A Review

    Get PDF
    Contour dynamics is a computational technique to solve for the motion of vortices in incompressible inviscid flow. It is a Lagrangian technique in which the motion of contours is followed, and the velocity field moving the contours can be computed as integrals along the contours. Its best-known examples are in two dimensions, for which the vorticity between contours is taken to be constant and the vortices are vortex patches, and in axisymmetric flow for which the vorticity varies linearly with distance from the axis of symmetry. This review discusses generalizations that incorporate additional physics, in particular, buoyancy effects and magnetic fields, that take specific forms inside the vortices and preserve the contour dynamics structure. The extra physics can lead to time-dependent vortex sheets on the boundaries, whose evolution must be computed as part of the problem. The non-Boussinesq case, in which density differences can be important, leads to a coupled system for the evolution of both mean interfacial velocity and vortex sheet strength. Helical geometry is also discussed, in which two quantities are materially conserved and whose evolution governs the flow

    The Coupled Cluster Method in Hamiltonian Lattice Field Theory

    Get PDF
    The coupled cluster or exp S form of the eigenvalue problem for lattice Hamiltonian QCD (without quarks) is investigated. A new construction prescription is given for the calculation of the relevant coupled cluster matrix elements with respect to an orthogonal and independent loop space basis. The method avoids the explicit introduction of gauge group coupling coefficients by mapping the eigenvalue problem onto a suitable set of character functions, which allows a simplified procedure. Using appropriate group theoretical methods, we show that it is possible to set up the eigenvalue problem for eigenstates having arbitrary lattice momentum and lattice angular momentum.Comment: LaTeX, no figur

    Spin-orbit splitting of image states

    Full text link
    We quantify the effect of the spin-orbit interaction on the Rydberg-like series of image state electrons at the (111) and (001) surface of Ir, Pt and Au. Using relativistic multiple-scattering methods we find Rashba-like dispersions with Delta E(K)=gamma K with values of gamma for n=1 states in the range 38-88 meV Angstrom. Extending the phase-accumulation model to include spin-orbit scattering we find that the splittings vary like 1/(n+a)^3 where a is the quantum defect and that they are related to the probability of spin-flip scattering at the surface. The splittings should be observable experimentally being larger in magnitude than some exchange-splittings that have been resolved by inverse photoemission, and are comparable to linewidths from inelastic lifetimes.Comment: 10 pages, 4 figure

    MC generators in CHORUS

    Get PDF
    This note presents an overview of general-purpose and specific Monte-Carlo event generators used in the simulation of the CERN - CHORUS experiment, aiming to search for νμ→ντ\nu_{\mu} \to \nu_{\tau} oscillations and charm particle decays in an emulsion target.Comment: 6 pages, LaTeX two-column format, 2 encapsulated postscript figures Proceedings of NuInt01 Workshop (KEK, Tsukuba, Japan, 13-16.12.2001

    Tree-level (pi, K)-amplitude and analyticity

    Full text link
    We consider the tree-level amplitude, describing all 3 channels of the binary (pi ,K)-reaction, as a meromorphic polynomially bounded function of 3 dependent complex variables. Relying systematically on the Mittag-Leffler theorem, we construct 3 convergent partial fraction expansions, each one being applied in the corresponding domain. Noting, that the mutual intersections of those domains are nonempty, we realize the analytical continuation. It is shown that the necessary conditions to make such a continuation feasible, are the following: 1) The only parameters completely determining the amplitude are the on-shell couplings and masses; 2) These parameters are restricted by a certain (infinite) system of bootstrap equations; 3) The full cross-symmetric amplitude takes the typically dual form, the Pomeron contribution being taken into account; 4)This latter contribution corresponds to a nonresonant background, which, in turn, is expressed in terms of cross-channel resonances parameters. It is demonstrated also, that the Chiral Symmetry provides a unique scale for the mentioned parameters, the resonance saturation effect appearing as a direct consequence of the above results

    Resonance production by neutrinos: I. J=3/2 Resonances

    Full text link
    The article contains general formulas for the production of J=3/2 resonances by neutrinos and antineutrinos. It specializes to the P_{33}(1232) resonance whose form factors are determined by theory and experiment and then are compared with experimental results at low and high energies. It is shown that the minimum in the low Q^2 region is a consequence of a combined effect from the vanishing of the vector form factors, the muon mass and Pauli blocking. Several improvements for the future investigations are suggested.Comment: 10 pages, LaTeX, misprints corrected, 1 reference adde

    Non-linear Dynamics in QED_3 and Non-trivial Infrared Structure

    Get PDF
    In this work we consider a coupled system of Schwinger-Dyson equations for self-energy and vertex functions in QED_3. Using the concept of a semi-amputated vertex function, we manage to decouple the vertex equation and transform it in the infrared into a non-linear differential equation of Emden-Fowler type. Its solution suggests the following picture: in the absence of infrared cut-offs there is only a trivial infrared fixed-point structure in the theory. However, the presence of masses, for either fermions or photons, changes the situation drastically, leading to a mass-dependent non-trivial infrared fixed point. In this picture a dynamical mass for the fermions is found to be generated consistently. The non-linearity of the equations gives rise to highly non-trivial constraints among the mass and effective (`running') gauge coupling, which impose lower and upper bounds on the latter for dynamical mass generation to occur. Possible implications of this to the theory of high-temperature superconductivity are briefly discussed.Comment: 29 pages LATEX, 7 eps figures incorporated, uses axodraw style. Discussion on the massless case (section 2) modified; no effect on conclusions, typos correcte

    Muon-anti-neutrino <---> electron-anti-neutrino mixing: analysis of recent indications and implications for neutrino oscillation phenomenology

    Get PDF
    We reanalyze the recent data from the Liquid Scintillator Neutrino Detector (LSND) experiment, that might indicate anti-nu_muanti-nu_e mixing. This indication is not completely excluded by the negative results of established accelerator and reactor neutrino oscillation searches. We quantify the region of compatibility by means of a thorough statistical analysis of all the available data, assuming both two-flavor and three-flavor neutrino oscillations. The implications for various theoretical scenarios and for future oscillation searches are studied. The relaxation of the LSND constraints under different assumptions in the statistical analysis is also investigated.Comment: 17 pages (RevTeX) + 9 figures (Postscript) included with epsfig.st

    Running coupling in electroweak interactions of leptons from f(R)-gravity with torsion

    Full text link
    The f(R)-gravitational theory with torsion is considered for one family of leptons; it is found that the torsion tensor gives rise to interactions having the structure of the weak forces while the intrinsic non-linearity of the f(R) function provides an energy-dependent coupling: in this way, torsional f(R) gravity naturally generates both structure and strength of the electroweak interactions among leptons. This implies that the weak interactions among the lepton fields could be addressed as a geometric effect due to the interactions among spinors induced by the presence of torsion in the most general f(R) gravity. Phenomenological considerations are addressed.Comment: 9 pages. arXiv admin note: text overlap with arXiv:1012.5529 by other author
    • …
    corecore