23 research outputs found

    The MKID Exoplanet Camera for Subaru SCExAO

    Get PDF
    We present the MKID Exoplanet Camera (MEC), a z through J band (800 - 1400 nm) integral field spectrograph located behind The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) at the Subaru Telescope on Maunakea that utilizes Microwave Kinetic Inductance Detectors (MKIDs) as the enabling technology for high contrast imaging. MEC is the first permanently deployed near-infrared MKID instrument and is designed to operate both as an IFU, and as a focal plane wavefront sensor in a multi-kHz feedback loop with SCExAO. The read noise free, fast time domain information attainable by MKIDs allows for the direct probing of fast speckle fluctuations that currently limit the performance of most high contrast imaging systems on the ground and will help MEC achieve its ultimate goal of reaching contrasts of 10710^{-7} at 2λ/D\lambda / D. Here we outline the instrument details of MEC including the hardware, firmware, and data reduction and analysis pipeline. We then discuss MEC's current on-sky performance and end with future upgrades and plans.Comment: To be published in Publications of the Astronomical Society of the Pacifi

    MKID Exoplanet Camera for Subaru SCExAO

    Get PDF
    We present the MKID Exoplanet Camera (MEC), a z through J band (800–1400 nm) integral field spectrograph located behind The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) at the Subaru Telescope on Maunakea that utilizes Microwave Kinetic Inductance Detectors (MKIDs) as the enabling technology for high contrast imaging. MEC is the first permanently deployed near-infrared MKID instrument and is designed to operate both as an IFU, and as a focal plane wavefront sensor in a multi-kHz feedback loop with SCExAO. The read noise free, fast time domain information attainable by MKIDs allows for the direct probing of fast speckle fluctuations that currently limit the performance of most high contrast imaging systems on the ground and will help MEC achieve its ultimate goal of reaching contrasts of 10⁻⁷ at 2 λ/D. Here we outline the instrument details of MEC including the hardware, firmware, and data reduction and analysis pipeline. We then discuss MEC's current on-sky performance and end with future upgrades and plans

    Regulating and Deregulating the Public Utilities 1830-2010

    Get PDF
    History can provide invaluable insights into important issues of the economic and social regulation of utilities, and offer lessons towards future debates. But the history of utility regulation – which speaks of changing, diverse and complex experiences around the world – was, unfortunately, sidelined or marginalised when economists and policymakers enthusiastically embraced the question of how to reform the utilities from the 1970s. This paper provides an overview of the three, overarching, `waves' of utility regulation from the nineteenth century to the present, documenting how, when and why the ways in which the roles of the state, the market and firms altered over time. It then contextualises and explains the main contributions of each of the papers included in this special issue of Business History, which cover energy, communications, water, transportation and other urban infrastructure regulation, across Western Europe, the United States and Australia

    SCExAO/MEC and CHARIS Discovery of a Low Mass, 6 AU-Separation Companion to HIP 109427 using Stochastic Speckle Discrimination and High-Contrast Spectroscopy

    Get PDF
    We report the direct imaging discovery of a low-mass companion to the nearby accelerating A star, HIP 109427, with the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument coupled with the MKID Exoplanet Camera (MEC) and CHARIS integral field spectrograph. CHARIS data reduced with reference star PSF subtraction yield 1.1-2.4 μ\mum spectra. MEC reveals the companion in YY and JJ band at a comparable signal-to-noise ratio using stochastic speckle discrimination, with no PSF subtraction techniques. Combined with complementary follow-up LpL_{\rm p} photometry from Keck/NIRC2, the SCExAO data favors a spectral type, effective temperature, and luminosity of M4-M5.5, 3000-3200 KK, and log10(L/L)=2.280.04+0.04\log_{10}(L/L_{\rm \odot}) = -2.28^{+0.04}_{-0.04}, respectively. Relative astrometry of HIP 109427 B from SCExAO/CHARIS and Keck/NIRC2, and complementary Gaia-Hipparcos absolute astrometry of the primary favor a semimajor axis of 6.550.48+3.06.55^{+3.0}_{-0.48} au, an eccentricity of 0.540.15+0.280.54^{+0.28}_{-0.15}, an inclination of 66.714+8.566.7^{+8.5}_{-14} degrees, and a dynamical mass of 0.2800.059+0.180.280^{+0.18}_{-0.059} MM_{\odot}. This work shows the potential for extreme AO systems to utilize speckle statistics in addition to widely-used post-processing methods to directly image faint companions to nearby stars near the telescope diffraction limit.Comment: 13 pages, 7 figures, 3 table

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review

    Systematic variations of macrospicule properties observed by SDO/AIA over half a decade

    Get PDF
    Macrospicules (MSs) are localized small-scale jet-like phenomena in the solar atmosphere, which have the potential to transport a considerable amount of momentum and energy from the lower solar atmospheric regions to the transition region and the low corona. A detailed statistical analysis of their temporal behavior and spatial properties is carried out in this work. Using state-of-the-art spatial and temporal resolution observations, yielded by the Atmospheric Imaging Assembly of Solar Dynamics Observatory, we constructed a database covering a 5.5 year long period, containing 301 macrospicules that occurred between 2010 June and 2015 December, detected at 30.4 nm wavelength. Here, we report the long-term variation of the height, length, average speed, and width of MS in coronal holes and Quiet Sun areas both in the northern and southern hemisphere of the Sun. This new database helps to refine our knowledge about the physical properties of MSs. Cross-correlation of these properties shows a relatively strong correlation, but not always a dominant one. However, a more detailed analysis indicates a wave-like signature in the behavior of MS properties in time. The periods of these long-term oscillatory behaviors are just under two years. Also, in terms of solar north/south hemispheres, a strong asymmetry was found in the spatial distribution of MS properties, which may be accounted for by the solar dynamo. This latter feature may then indicate a strong and rather intrinsic link between global internal and local atmospheric phenomena in the Sun
    corecore