108 research outputs found

    Evaluation of the mechanical properties of cements with fillers derived from the CO2 reduction of cement plants

    Get PDF
    This work introduces a novel method for the development of CO2 recovery systems derived from the production process of cement in order to obtain CaCO3 nanofiller in cement-based composites. Research was carried out in collaboration between the Department of Applied Science and Technology (DISAT) and the Department of Structural, Construction and Geotechnical Engineering (DISEG) of Politecnico di Torino. The objective of this method was dual. Firstly, it aimed to obtain a precipitated calcium carbonate - nanoCaCO3 - with a high degree of purity. Secondly, it aimed to optimize the characteristics of these nanoparticles e.g. additional percentages, morphology, particle size distribution or crystal phase, according to their use in cement-based composites. The synthesized nanoCaCO3 particles were subsequently added into the cementitious composites in different percentages according to the weight of the cement, in order to understand their behaviour within the cement matrix. The mechanical properties were also evaluated, both at 7 and 28 days, through three point bending and compression tests. The results of the mechanical tests showed a promising improvement in strength and toughness. This study is a first step towards developing a CO2 circular economy

    Nano CaCO3 particles in cement mortars towards developing a circular economy in the cement industry

    Get PDF
    This paper calls into question the effects of incorporating nano calcium carbonate (CaCO3) particles in cement mortars, as they are interesting additive materials already successfully tested as cement nanofiller. These nanoparticles could potentially be prepared through the carbonation route using CO2 from combustion gases from the cement industry. This could enable a circular-economy approach for carbon capture and its re-use within the cement industry, in a sustainable and synergistic manner. In this study, part of the cement content was substituted with commercial nano CaCO3 particles to investigate their effects on the flexural and compressive strength of the resulting cement mortars, after curing for 7 and 28 days. Decreasing the cement content could lead to a reduction in the carbon footprint of cement, which is responsible for approximately 8% of global carbon dioxide emissions. Preliminary results using synthesized CaCO3 particles as nanofillers showed that, after 7 days of curing, mechanical properties of cement mortars improved. This indicates that hydration reaction was accelerated since CaCO3 acts as seeding for this reaction. By contrast, after 28 days of curing, no major improvement was observed. A higher content of calcium carbonate nanoparticles may have reduced the filler effect of these particles due to aggregation phenomena. In the present work, the effects of commercial nano CaCO3 particles on cement hydration were investigated. Mechanical tests showed promising results both after 7 and 28 days of curing. This could lead to the reduction of the carbon footprint of cement manufacturing and produce increasingly better performing building materials. Thus, the development of a circular economy in the cement industry could be achieved

    From Scattering Amplitudes to the Dilatation Generator in N=4 SYM

    Full text link
    The complete spin chain representation of the planar N=4 SYM dilatation generator has long been known at one loop, where it involves leading nearest-neighbor 2 -> 2 interactions. In this work we use superconformal symmetry to derive the unique solution for the leading L -> 2 interactions of the planar dilatation generator for arbitrarily large L. We then propose that these interactions are given by the scattering operator that has N=4 SYM tree-level scattering amplitudes as matrix elements. We provide compelling evidence for this proposal, including explicit checks for L=2,3 and a proof of consistency with superconformal symmetry.Comment: 39 pages, v2: reference added and minor changes, published versio

    Improving houses in the Bolivian Chaco increases effectiveness of residual insecticide spraying against infestation with Triatoma infestans, vector of Chagas disease

    Get PDF
    Objective: Failure to control domestic Triatoma infestans in the Chaco is attributed to vulnerable adobe construction which provides vector refuges and diminishes insecticide contact. We conducted a pilot to test impact of housing improvement plus indoor residual spraying (IRS) on house infestation and vector abundance in a rural community in the Bolivian Chaco. Methods: The intervention included three arms: housing improvement + IRS [HI], assisted IRS [AS] in which the team helped to clear the house pre-IRS, and routine IRS [RS]. HI used locally available materials, traditional construction techniques, and community participation. Vector parameters were assessed by Timed Manual Capture for 2 person-hours per house at baseline and medians of 114, 173, 314, 389, and 445 days post-IRS-1. A second IRS round was applied at a median of 314 days post-IRS-1. Results: Post-intervention infestation indices and abundance fell in all three arms. The mean odds of infestation was 0.29 (95% CL 0.124, 0.684) in the HI relative to the RS arm. No difference was observed between AS and RS. Vector abundance was reduced by a mean 44% (24.8, 58.0) in HI compared to RS, with no difference between AS and RS. Median delivered insecticide concentrations per house were lower than the target of 50mg/m2 in >90% of houses in all arms. Conclusion: Housing improvement using local materials and community participation is a promising strategy to improve IRS effectiveness in the Bolivian Chaco. A larger trial is needed to quantify the impact on re-infestation over time

    Cretaceous intraplate contraction in Southern Patagonia: A far-field response to changing subduction dynamics?

    Get PDF
    The origin, extent, and timing of intraplate contraction in Patagonia are among the least understood geological processes of southern South America. Particularly, the intraplate Deseado fold-thrust belt (FTB), located in the Patagonian broken foreland (47°–48°300 S), is one of the most enigmatic areas. In this belt, time constraints on tectonic events are limited and synorogenic deposits have not been documented so far. Furthermore, the driving mechanism for intraplate contraction remains unknown. In this study, we carried out a structural and sedimentological analysis. We report the first syntectonic deposits in this area in the BaquerĂł (Aptian) and Chubut (Cenomanian/Campanian) groups and a newly found unit referred to as the Albian beds (109.9 ± 1.5 Ma). Thus, several contractional stages in late Aptian, Albian, and Cenomanian-Campanian are then inferred. We suggest that the Deseado FTB constituted the southernmost expression of the early Patagonian broken foreland in Cretaceous times. Additionally, we analyzed the spatiotemporal magmatic arc behavior as a proxy of dynamic changes in the Andean subduction during determined stages of intraplate contraction. We observe a significant arc broadening from ~121 to 82 Myr and magmatic quiescence after ~67 Ma. This is interpreted as a slab shallowing to flattening process. Far-field tectonic forces would have been produced by increased plate coupling linked to the slab flattening as indirectly indicated by the correlation between Cretaceous arc expansion and intraplate contraction. Finally, the tectonic evolution of the Deseado FTB favors studies supporting inception of Andean shortening since Cretaceous times.Fil: Gianni, Guido Martin. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, FĂ­sicas y Naturales. Instituto GeofĂ­sico SismolĂłgico Volponi; ArgentinaFil: Navarrete Granzotto, CĂ©sar Rodrigo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Juan; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; ArgentinaFil: Liendo, Ingrid Florencia. Universidad Nacional de la Patagonia "San Juan Bosco"; ArgentinaFil: DĂ­az, Marianela Ximena Yasmin. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, FĂ­sicas y Naturales. Departamento de GeologĂ­a; ArgentinaFil: Gimenez, Mario Ernesto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, FĂ­sicas y Naturales. Instituto GeofĂ­sico SismolĂłgico Volponi; ArgentinaFil: Encinas, Alfonso. Universidad de ConcepciĂłn; ChileFil: Folguera Telichevsky, Andres. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias GeolĂłgicas; Argentin

    On non-supersymmetric conformal manifolds: field theory and holography

    Get PDF
    We discuss the constraints that a conformal field theory should enjoy to admit exactly marginal deformations, i.e. to be part of a conformal manifold. In particular, using tools from conformal perturbation theory, we derive a sum rule from which one can extract restrictions on the spectrum of low spin operators and on the behavior of OPE coefficients involving nearly marginal operators. We then consider conformal field theories admitting a gravity dual description, and as such a large-NN expansion. We discuss the relation between conformal perturbation theory and loop expansion in the bulk, and show how such connection could help in the search for conformal manifolds beyond the planar limit. Our results do not rely on supersymmetry, and therefore apply also outside the realm of superconformal field theories

    Bounds on OPE coefficients in 4D Conformal Field Theories

    Get PDF
    We numerically study the crossing symmetry constraints in 4D CFTs, using previously introduced algorithms based on semidefinite programming. We study bounds on OPE coefficients of tensor operators as a function of their scaling dimension and extend previous studies of bounds on OPE coefficients of conserved vector currents to the product groups SO(N) 7SO(M). We also analyze the bounds on the OPE coefficients of the conserved vector currents associated with the groups SO(N), SU(N) and SO(N) 7SO(M) under the assumption that in the singlet channel no scalar operator has dimension less than four, namely that the CFT has no relevant deformations. This is motivated by applications in the context of composite Higgs models, where the strongly coupled sector is assumed to be a spontaneously broken CFT with a global symmetry. \ua9 The Authors
    • 

    corecore