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1 Introduction

It has been known since many years that there exist families of superconformal field the-

ories (SCFTs) connected by exactly marginal deformations [1] (see, e.g., [2–5] for gener-

alizations). The corresponding exactly marginal couplings parametrize what is known as

the conformal manifold.

An obvious question is whether conformal manifolds can exist even in absence of super-

symmetry. Unless there exist some other underlying extended symmetries, general argu-

ments suggest this to be hardly possible. Upon deforming a conformal field theory (CFT) as

SCFT → SCFT + g

∫
ddxO , (1.1)

where O is a scalar primary of the CFT with scaling dimension ∆O = d, a β function for

the coupling g is induced, at the quantum level. The existence of a conformal manifold re-

quires β(g) = 0 and it is hard to believe this to be possible without supersymmetry, which,

in some circumstances [1], can in fact protect O from acquiring an anomalous dimension.

Moreover, the deformation triggered by the coupling g could also generate new couplings

at the quantum level, and the corresponding β functions should also be set to zero, if we

were to preserve conformal invariance. Therefore, constraints look rather tight.

One could wonder whether there exist some consistency constraints that forbid a non-

supersymmetric conformal manifold to exist, to start with. While we are not aware of any

no-go theorem, the following simple argument shows that non-supersymmetric conformal

manifolds can be consistent at least with unitarity and crossing symmetry.

As we will review later, the requirement of vanishing β functions imposes stringent

constraints on the CFT data, but only regarding operators with integer spins. One can then
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take any of the known SCFTs belonging to a conformal manifold and truncate the spectrum

of operators, excluding all operators with half-integer spins, while leaving CFT data of

integer-spin operators unmodified. This is consistent, because half-integer spin operators

cannot appear in the OPE of two integer spin operators. The operator algebra one ends up

with is crossing-symmetric because initially it was, and also the truncated Hilbert space

does not contain any negative-norm states, because the original one did not, consistently

with unitarity. CFT data still obey the β-function constraints, because the original theory

had a conformal manifold by assumption. And, finally, the resulting operator algebra

does not form a representation of the supersymmetry algebra, because it contains only

integer spin operators. This might suggest it to be simple, eventually, to construct non-

supersymmetric CFTs living on a conformal manifold. In fact, unitarity and crossing

symmetry are necessary but not sufficient conditions to get a consistent theory.1 For

instance, there are further conditions coming from modular invariance in two dimensions

or, more generally, by requiring the consistency of the CFT at finite temperature in any

number of dimensions, see, e.g., [6]. This is why the truncation described above does not

allow for getting non-supersymmetric conformal manifolds for free. The truncated operator

algebra might not form a consistent CFT, eventually. It will be interesting to investigate

this issue further. In this work, we will just assume that non-supersymmetric conformal

manifolds can exist, and elaborate upon the corresponding constraints.

The very possibility for a conformal manifold to exist requires the presence of one

(or more) marginal scalar operator in the undeformed CFT, an operator O with scaling

dimension ∆O = d. This implies that β(g) vanishes, at tree level in g. We want to

investigate which further conditions the requirement of vanishing β function at the quantum

level imposes on the CFT. To put things the simplest, we will focus on one-dimensional

conformal manifolds, described by deformations like (1.1).

In section 2, using conformal perturbation theory, we start by reviewing the condi-

tions that the vanishing of the β function up to two-loop order imposes on the OPE of

the operator O. Then, using also recent numerical bootstrap results, we show what other

information on the spectrum of low dimension operators other than O, can be extracted.

This includes, in particular, the dependence on scaling dimension of OPE coefficients in-

volving nearly marginal operators ∆ ∼ d, as well as a prediction on the content of low spin

operators in the spectrum of the CFT.

In section 3, we focus on CFTs admitting a gravity dual description. First, we discuss

the relation between conformal perturbation theory and the 1/N expansion, and the role

that Witten diagrams play in this matter. Then, focusing on a toy-model, we investigate

under which conditions a conformal manifold existing at leading order in 1/N , can survive

at non-planar level, and show that, even in absence of supersymmetry, this is a non-

empty set. On the way, we also provide a nice AdS/CFT consistency check regarding

non-supersymmetric AdS (in)stability and CFTs RG flows.

Section 4, which is our last section, contains a discussion on models with richer dy-

namics, and an outlook on what one can do next using our results.

1We thank Alexander Zhiboedov for a discussion on this point.
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2 Constraints from conformal perturbation theory

Given a CFT and a deformation as that in eq. (1.1), one expects that a β function for the

coupling g is generated and that conformal invariance is lost. The β function reads

β(g) = β1 g
2 + β2 g

3 + . . . . (2.1)

Loop coefficients are expected to depend on the data of undeformed CFT. In order to

find such dependence a perturbative analysis can be conveniently done in the context of

conformal perturbation theory (CPT) [7].

One can extract the β function by considering cleverly chosen physical observables and

demand them to be UV-cutoff independent. Following [8] (see also [9, 10]), we consider the

overlap

〈O(∞)|0〉g,V (2.2)

where O(∞) = limx→∞ x
2dO(x), while |0〉g,V = eg

∫
V d

dxO(x)|0〉 is the state obtained by

deforming the theory by (1.1) in a finite region around the origin. The choice of a finite

volume V allows one to get rid of IR divergences, while not affecting the UV behavior we are

interested in. Expanding (2.2) in g one gets a perturbative expansion in terms of integrals

of n-point functions of O. These are generically plagued by logarithmic divergences, which

can be absorbed by demanding that the coupling g runs with scale µ in a way that the

final result is µ-independent. This, in turns, lets one extract the β function.

Proceeding this way one gets for the β function at two loops (which to this order is

universal, hence independent of the renormalization scheme) the following expressions

β1 = −1

2
Sd−1COOO (2.3)

β2 = −1

6
Sd−1

∫
ddx

[
〈O(0)O(x)O(e)O(∞)〉c−

∑
Φ

1

2
C2
OOΦ

(
1

xd(x−e)d
+

1

xd
+

1

(x−e)d

)
−
∑
Ψ

C2
OOΨ

(
1

x2d−∆Ψ
+

1

(x−e)2d−∆Ψ
+x−∆Ψ

)]
, (2.4)

where Sd−1 is the volume of the (d − 1)-dimensional unit sphere, e is a unit vector in

some fixed direction and the subscript c in the four-point function refers to the connected

contribution. Sums are over marginal operators Φ and relevant operators Ψ appearing in

the OO OPE. In principle, one can go to higher orders in g. In particular, marginality of

O at order O(gn−1) would require the vanishing of logarithmic divergences of an integral

in ddx1 · · · ddxn−3 of the n-point function 〈O . . .O〉.
The deformation (1.1) does not cause the running of g, only. In general, any coupling

gΦ dual to a marginal operator Φ appearing in the OPE of O(x)O(0) will start running, due

to quantum effects.2 Following the same procedure described above, one gets the following

2Runnings are also induced for relevant operators appearing in the OPE. However, these effects are

associated to power-law divergences and can be reabsorbed by local counter-terms. This is equivalent to be

at a fixed point, to O(g2) order, of the corresponding β functions β(gΨ) [7].
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contribution at order g2 to β(gΦ)

β(gΦ) ⊃ −1

2
Sd−1COOΦ g

2 . (2.5)

Therefore, at one loop in CPT, the persistence of a conformal manifold under the defor-

mation (1.1) implies the following constraints on the OPE coefficients of the CFT

COOΦ = 0 , ∀Φ such that ∆Φ = d . (2.6)

Taking into account the above constraint, eq. (2.4) simplifies and we get the following

condition at two-loops, eventually∫
ddx

[
〈O(0)O(x)O(e)O(∞)〉c −

∑
Ψ

C2
OOΨ

(
1

x2d−∆Ψ
+

1

(x− e)2d−∆Ψ
+ x−∆Ψ

)]
= 0 .

(2.7)

Eqs. (2.6) and (2.7) are the two constraints the existence of a conformal manifold under

the deformation (1.1) imposes on the CFT at two-loop order in CPT.3

2.1 Two-loop constraint and integrated conformal blocks

One can try to translate the constraint (2.7) into a sum rule in terms of conformal blocks,

which can provide, in turn, constraints on the CFT data.

Let us first rewrite (2.7) as an integral of the full four-point function, that is∫
ddx

(
〈O(0)O(x)O(e)O(∞)〉 − 1

x2d
− 1

(x− e)2d
− 1

−
∑
Ψ

C2
OOΨ

(
1

x2d−∆Ψ
+

1

(x− e)2d−∆Ψ
+ x−∆Ψ

))
= 0 . (2.8)

The integrand above is axial-symmetric, hence the integration can be seen as an integration

over a two-plane (z, z̄) containing the unit vector e, followed by integration over a (d− 2)-

dimensional sphere, whose coordinates the integrand does not depend on. So, for the

integration measure, we get

ddx→ π
d−1

2

2Γ
(
d−1

2

)d2z

(
z − z̄

2i

)d−2

. (2.9)

Notice that the integrand together with the measure is inversion-invariant. Therefore,

instead of integrating over the whole Rd, one can integrate over a unit disk, Br=1(0) =

{z ∈ C , |z| ≤ 1}, where the coordinate z is chosen such that x = e corresponds to z = 1.

The integrand in eq. (2.8) is expected to be a singularity-free function, but among the

terms coming with a minus sign, there are some which have manifest singularities. Hence,

they must be compensated by the corresponding singularities of the four-point function.

Due to divergences both at z = 0 and z = 1, one cannot use just one OPE channel.

3One can obtain similar expressions for two-loop β function of other marginal operators, if there are any,

and get additional constraints.
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Re(z)

Im(z)

0 11/2

D1

Figure 1. Integration in the (z, z̄) plane. The fundamental domain D1 is the violet region. The

regions D2, D3 and D4 are defined in (2.10) and are easily recognizable in the figure.

However, it turns out that one can reduce the integration domain to a fundamental one [11],

for which a single channel suffices. The integral (2.8) is invariant under transformations

generated by z → 1/z and z → 1− z and complex conjugation. Hence, choosing one of the

following domains

D1 = {z ∈ C| |1− z|2 < 1, Re (z) < 1/2, Im (z) > 0}
D2 = {z ∈ C| |1− z|2 < 1, Re (z) < 1/2, Im (z) < 0}
D3 = {z ∈ C| |1− z|2 > 1, |z|2 < 1, Im (z) > 0}
D4 = {z ∈ C| |1− z|2 > 1, |z|2 < 1, Im (z) < 0} , (2.10)

one can use s-channel OPE only. For the sake of computational convenience we will not do

the minimal choice, but use the union of all four domains, D = D1 ∪D2 ∪D3 ∪D4. Using

s-channel OPE, we get

〈O(0)O(x)O(e)O(∞)〉 =

∑
O′ C

2
OOO′g∆O′ , lO′

x2d
, (2.11)

where g∆O′ , lO′ are conformal blocks corresponding to the exchange of an operator O′ with

dimension ∆O′ and spin lO′ (with lO′ even, as in the OPE of two identical scalars only

operators with even spin appear). The identity operator contribution cancels the 1/x2d

divergent contribution in eq. (2.8).

Let us now define the following quantities

G∆O′ , lO′ =
π
d−1

2

2Γ
(
d−1

2

) ∫
D
d2z

(
z − z̄

2i

)d−2 g∆O′ , lO′ (z, z̄)

|z|2d
, ∆ > d , (2.12)

G∆O′ , 0 =
π
d−1

2

2Γ
(
d−1

2

) ∫
D
d2z

(
z − z̄

2i

)d−2

×
(
g∆O′ , 0(z, z̄)

|z|2d
− 1

|z|2d−∆
− 1

|1− z|2d−∆
− |z|−∆

)
, ∆ < d , (2.13)
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A =
π
d−1

2

2Γ
(
d−1

2

) ∫
D
d2z

(
z − z̄

2i

)d−2 (
1

|1− z|2d
+ 1

)
, (2.14)

where G∆O′ , lO′ are integrated conformal blocks (note that, for ∆ < d, that is eq. (2.13), only

scalar operators are above the unitarity bound) and A is a positive, dimension-dependent

number, which in, e.g., d = 4 dimensions reads

A =
π

24

(
9
√

3 + 16π
)
. (2.15)

Using all above definitions, eq. (2.8) can be rewritten as the following sum rule∑
O′

C2
OOO′G∆O′ , lO′ = A . (2.16)

Note that now the contribution of the identity operator is excluded from the sum.

Equation (2.16) is valid in d dimensions, and can be evaluated using known expressions

for conformal blocks. Focusing, again, on d = 4, they read

g∆, l(z, z̄) =
zz̄

z − z̄
(K∆+l(z)K∆−l−2(z̄)−K∆+l(z̄)K∆−l−2(z)) , (2.17)

where Kβ is given in terms of hypergeometric functions, Kβ(x) = xβ/22F1

(
β
2 ,

β
2 , β;x

)
.

From these, one can then compute integrated conformal blocks G∆O′ , lO′ defined in

eqs. (2.12) and (2.14). In figure 2, integrated conformal blocks as functions of dimensions

∆ and spin l are provided. Relevant scalar operators have negative integrated conformal

blocks and therefore give a negative contribution to the sum rule (2.16). The opposite

holds for irrelevant scalar operators which give instead a positive contribution. All other

operators display an alternating behavior: contributions are positive for l = 4, 8, . . . and

negative for l = 2, 6, . . . (our numerics suggests this behavior to hold for arbitrary values

of l). One can repeat the above analysis in spacetime dimensions other than four, and it

turns out that exactly the same pattern holds.

A point worth stressing is that the sum rule (2.16) is not unique. For one thing, it

depends upon the choice of the integration domain D. More generally, this ambiguity

comes from crossing symmetry. Indeed, the crossing symmetry equation for a marginal

operator is given by∑
O′

C2
OOO′

(
vd g∆O′ , lO′ (u, v)− ud g∆O′ , lO′ (v, u)

)
= 0 , (2.18)

where u and v are conformal cross-ratios which, in our case, are u = zz̄ and v = (1−z)(1−z̄).

For any point z, z̄ this gives a sum of the same form as eq. (2.16) but with a zero on the

r.h.s. Any such sum, or linear combinations thereof, can be added to eq. (2.16), modifying

the coefficients in front of COOO′ ’s without changing the r.h.s., hence giving, eventually,

a different sum rule. It would be interesting to see whether there exists a choice which

makes all terms in the l.h.s. of (2.16) being positive definite. From such a sum rule it would

be possible to get very stringent constraints on CFT data as, e.g., a lower bound on the

– 6 –
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(a) l = 0, ∆ < 4 (relevant scalar).
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(b) l = 0, ∆ > 4 (irrelevant scalar).
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(d) l = 4.

10 12 14 16 18
Δ
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(e) l = 6.
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Δ
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G

(f) l = 8.

Figure 2. Integrated conformal blocks G as a function of operator dimensions for l = 0, 2, 4, 6, 8

spin in d = 4 dimensions.

central charge of the theory. We were not able to find such linear combination for arbitrary

d, if it exists at all.

For the sake of what we will do in later sections, let us finally notice that if there are

no relevant scalar operators in the OO OPE, eq. (2.7) simplifies to

∫
ddx〈O(0)O(x)O(e)O(∞)〉c = 0 , (2.19)

and integrated conformal blocks in eq. (2.14), hence contributions as in figure 2a, would

not contribute to (2.16). Still, this would not change the alternate sign behavior of the

sum rule (2.16), since also operators with l = 2 mod 4 contribute with a negative sign.

– 7 –
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2.2 Constraints and bounds on CFT data

The alternating sign behavior in the sum (2.16) makes it impossible to get straight bounds

on COOO′ coefficients, as one might have hoped. Nevertheless, one can still extract useful

information out of (2.16) , as we are going to discuss below.

Nearly marginal operators. Along a conformal manifold the dimension of a generic

(that is, non-protected) operator changes continuously as a function of the couplings g

parametrizing the conformal manifold. In particular, it can happen that an operator K is

relevant for g < g∗, irrelevant for g > g∗, and becomes marginal at g = g∗. From (2.6) it fol-

lows that, at g = g∗, COOK = 0. On the other hand, figures 2a and 2b show that integrated

conformal blocks of scalar operators blow up when ∆→ d. More precisely, one can see that

G∆,0 ∝
1

∆− d
when ∆→ d . (2.20)

In order to keep the two-loop beta function coefficient finite, it should be that4

lim
∆→d

C2
OOKG∆,0 = finite , (2.21)

implying that as ∆ → d, COOK must approach zero at least as fast as (∆ − d)1/2. This

gives a prediction on how the OPE coefficient approaches zero as a function of g − g∗ (in

fact, a lower bound on such a dependence).

The simplest testing ground one can think of to put this prediction at work is N = 4

SYM, which admits an exactly marginal deformation associated to the gauge coupling itself.

Indeed, the free theory is part of the conformal manifold and one can work at arbitrary

small coupling, where computations can be reliably done. As an example, one can consider

the D-component (in N = 1 language) of the Konishi multiplet, K = TrXiXi, which is

marginal at gYM = 0 and becomes marginally irrelevant in the interacting theory. Its

anomalous dimensions is known [12, 13] and one could then give a prediction, via (2.21),

on the behaviour of COOK, where O is the marginal operator dual to the (complexified)

gauge coupling. However, due to a U(1) bonus symmetry enjoyed by N = 4 SYM and a

corresponding selection rule [14], such OPE coefficient is predicted to vanish. Hence, in

this specific case, the constraint (2.21) does not provide any new information.

In fact, N = 4 SYM admits a larger conformal manifold, along which the predictions

coming from eq. (2.21) become relevant. Using again an N = 1 notation, N = 4 has three

chiral superfields Φi that transform in the fundamental representation of the SU(3) flavor

symmetry. These chiral superfields can be used to construct an exactly marginal SU(3)

invariant superpotential (the N = 4 cubic superpotential) and ten classically marginal

superpotential terms that transform as a 10 of SU(3). Two out of the ten marginal su-

perpotentials are exactly marginal [1]. Deforming the N = 4 theory by these exactly

marginal operators explicitly breaks the SU(3) symmetry and lifts the dimension of other

4This holds unless for (the very fine-tuned) situations in which there exists a second marginal operator

at g = g∗ that changes its dimension from being irrelevant to be relevant, in such a way that the two

singularities compensate each other.

– 8 –
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classically marginal operators along with the SU(3) broken currents. These operators ac-

quire anomalous dimension at the quadratic order in the deformation and were explicitly

obtained in [15]. The constraint (2.21) then predicts that the OPE coefficient COOK, (O
being the SU(3) breaking exactly marginal operator and K any of the marginally irrele-

vant operators) scales at least linearly in the exactly marginal coupling. Note that these

statements are independent from gYM so they hold also at strong coupling. Very similar

behavior occurs for a large class of N = 1 superconformal quiver gauge theories obtained

by considering D-branes at Calabi-Yau singularities [2–5]. There again, non-trivial confor-

mal manifolds exist, along which operators which are marginal in the undeformed theory

acquire an anomalous dimensions, which can be computed using similar techniques as for

N = 4 SYM (see [15] for details). What is interesting in these models is that, unlike N = 4

SYM, there is no point whatsoever on the conformal manifold in which the theory is weakly

coupled. So these results are intrinsically at strong coupling.

Estimating the tail. The fact that A in eq. (2.16) is a positive number implies that the

OO OPE must contain at least one operator with positive integrated conformal block. From

the results reported in figure 2 it follows that at least an irrelevant scalar operator or else

a spinning operator with l = 4 mod 4 must be present. In principle, this can be interesting

since to date numerical bootstrap results are less powerful as far as OPE of operators of

dimension ∆ & d are concerned. When a marginal operator O exists, instead, one gets

constraints also about the spectrum of other such operators. This can be seen as follows.

Let us consider a given value ∆ = ∆∗ and divide the sum (2.16) as∑
O′:∆<∆∗

C2
OOO′ G∆O′ , lO′ +

∑
O′:∆>∆∗

C2
OOO′ G∆O′ , lO′ = A . (2.22)

Since the series is expected to converge, there should exist (large enough) values of ∆∗ for

which ∑
O′:∆>∆∗

C2
OOO′ G∆O′ , lO′ < A . (2.23)

This means that ∑
O′:∆<∆∗

C2
OOO′ G∆O′ , lO′ > 0 , (2.24)

which implies, in turn, that among the operators with dimension ∆ < ∆∗, at least one

operator with positive integrated conformal block should exist. If ∆∗ is parametrically

large this is something not very informative. If ∆∗ is not too large, instead, one can get

interesting constraints on the spectrum of low dimension operators.

One can try to give an estimate of the values of ∆ = ∆∗ for which (2.23) is satisfied,

e.g., using the approach of [16, 17], where the question of convergence of OPE expansion was

addressed, and an estimate of the tail was given. For example, for d = 4 this takes the form

∑
O′:∆>∆∗

C2
OOO′g∆O′ ,lO′ (z, z̄) .

216∆16
∗

Γ(17)

∣∣∣∣ z

(1 +
√

1− z)2

∣∣∣∣∆∗ . (2.25)

– 9 –
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Figure 3. The estimate Σ(∆∗) as a function of ∆∗.

One can then define

Σ(∆∗) ≡ π
∫
D
d2z

(
z − z̄

2i

)2 216∆16
∗

Γ(17)|z|8

∣∣∣∣ z

(1 +
√

1− z)2

∣∣∣∣∆∗ , (2.26)

which means that ∑
O′:∆>∆∗

C2
OOO′ G∆O′ , lO′ . Σ(∆∗) . (2.27)

The function Σ(∆∗) is shown in figure 3. In principle, the estimate (2.25) is valid only

asymptotically, namely in the limit ∆∗ → ∞. Moreover, the actual value above which

the error one is making can be neglected is theory-dependent. Therefore, one should be

careful using (2.25) for too low values of ∆∗ and/or to make generic predictions. In fact,

numerical bootstrap results suggest that a value of, say, O(10), can already be in a safe

region for a large class of CFTs (see [18] for a discussion on this point).

Looking at (2.24), it is clear that the lower ∆∗ the more stringent the constraints on low

dimension operators. Requiring the l.h.s. of eq. (2.23) to saturate the inequality, which is

the best one can do, and evaluate it using (2.27), we get that Σ(∆∗) = A for ∆∗ = 16.3. This

is already a large enough value for which the estimate (2.25) can be trusted, for a large class

of CFTs [18]. Looking at figure 2 we then conclude that in the OPE of an exactly marginal

scalar operator there must be either an irrelevant scalar operator and/or some spin l =

4, 8, 12 operators with dimensions ∆ . 16 (recall that the unitarity bound is ∆ = d−2+ l).

In all above discussion we have been focusing, for definiteness, on d = 4 dimensions,

but similar conclusions can be drawn in any dimensions d.

Let us finally note, in passing, that the same approach used here could more generally

be used to constrain the spectra of a CFT whenever the two loop β function coefficient is

known.

3 Conformal manifolds and holography

In this section we want to focus our attention on CFTs admitting a gravity dual description.

These can be characterized as CFTs which admit a large-N expansion and whose single-
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trace operators with spin greater than two have a parametrically large dimension [19].

More precisely, in the large-N limit the CFT reduces to a subset of operators having small

dimension (i.e., a dimension ∆ that does not scale with N), and whose connected n-point

functions are suppressed by powers of 1/N . This implies, in particular, that for N →∞ the

four-point function factorizes and hence the connected four-point function vanishes, like

for free operators. However, unlike the latter, these operators, also known as generalized

free fields, do not saturate the unitarity bound (see [6] for a nice review).

Scalar operators are dual to scalar fields in the bulk. From the mass/dimension relation,

which (for scalars and in units of the AdS radius) reads

m2 = ∆(∆− d) , (3.1)

it follows that in order for the dual operator O to be marginal, one needs to consider a

massless scalar in the bulk. Its non-normalizable mode acts as a source for O, and thus

corresponds to a deformation in the dual field theory described by eq. (1.1) (in other words,

the non-normalizable mode is dual to the coupling g). The conformal manifoldMc is hence

mapped into the moduli space M of AdS vacua of the dual gravitational theory, i.e., AdS

solutions of bulk equations of motion parametrized by massless, constant scalar fields [20].

The duality between Mc and M makes it manifest the difficulty to have conformal

manifolds in absence of supersymmetry. A non-supersymmetric CFT is dual to a non-

supersymmetric gravitational theory. Differently from supersymmetric moduli spaces, non-

supersymmetric moduli spaces are expected to be lifted at the quantum level. Quantum

corrections in the bulk are weighted by powers of 1/N . Hence, one would expect that a

moduli space of AdS vacua existing at the classical level, would be lifted at finite N .

For theories with a gravity dual description, this is the simplest argument one can

use to argue that conformal manifolds without supersymmetry are something difficult to

achieve. In this respect, it is already interesting to find non-supersymmetric conformal

manifolds persisting at first non-planar level. One of our aims, in what follows, is to show

that this is not an empty set.

We will consider the simplest model one can think of, namely a massless scalar field φ

minimally coupled to gravity. This corresponds to CFTs which, as far as single-trace oper-

ators are concerned, in the large-N limit reduce to a single low-dimension scalar operator

O, dual to φ.5

3.1 Conformal perturbation theory and the 1/N expansion

Our first goal is to discuss how the two perturbative expansions we have to deal with in

the CFT, that is, conformal perturbation theory, which is an expansion in g, and the 1/N

expansion, are related to one another from a holographic dual perspective.

Let us consider a bulk massless scalar φ having polynomial interactions of the form∑
n

λn [φn] , (3.2)

5A CFT must include the energy-momentum tensor. Our toy-model could be thought of as a sector

of an AdS compactification in which there is a self-interacting scalar in the approximation that gravity

decouples, as in e.g. [19]. Most of what we will do, does not depend on this approximation.
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1/N  - suppressed wrt tree-level diagrams2

++β 1 ~ +  …. 

Figure 4. Witten diagrams contributing to COOO. Violet lines correspond to propagation of φ

fields and may have spacetime derivatives acting on them, depending on the specific structure of the

operators (3.2). At tree-level, only cubic couplings can contribute to the three-point function. At

loop level, also couplings with n > 3 can contribute, e.g., the quintic coupling shown in the figure.

+ +β 2~

1/N  - suppressed wrt tree-level diagrams2

+….+d xd

Figure 5. Structure of Witten diagrams contributing to the two-loop coefficient of β(g), after

integration in ddx. Conventions are as in figure 4.

where n ≥ 3 and [φn] stands for Lorentz invariant operators made of n fields φ’s. For the

time being, we do not need to specify their explicit form, which can also include derivative

couplings.

Let us consider the one-loop coefficient β1, eq. (2.3). In order to compute it holo-

graphically, one needs to evaluate Witten diagrams [21] with three external lines. Witten

diagrams are weighted with different powers of 1/N , corresponding to tree-level and loop

contributions in the bulk. As shown in figure 4, at tree level only the cubic vertex can

contribute to the three-point function. At higher loops, instead, also couplings with n > 3

may contribute to β1.

A similar story holds for the two-loop coefficient β2 (note that in our one-field model

eq. (2.7) simplifies just to the integral of the four-point function, eq. (2.19)). To leading

order, there are two contributions. The contact quartic interaction and the cubic scalar

exchange, as shown in figure 5. Again, at higher-loops in the bulk coupling, one can get

contributions also from operators with n > 4.

The analysis applies unchanged to the three-loop coefficient β3 and higher. In partic-

ular, only operators [φn] with n ≤ m can contribute to the m-point function of O at tree

level. Conversely, at loop level, also operators with n > m may contribute.
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What we would like to emphasize with this discussion is that by doing tree-level com-

putations in the bulk, one can extract the leading, planar contribution to β(g) at all loops

in g. In other words, classical gravity provides an exact answer, in conformal perturbation

theory, to the existence of a conformal manifold, at leading order 1/N . To get this, rather

than computing Witten diagrams, it is clearly much simpler to solve bulk equations of

motion and see which constraints on the structure of the operators (3.2) does the existence

of AdS solutions with constant φ impose. This is what we will do, first. Then, we will

compute explicitly tree-level Witten diagrams contributing to β1 and β2, and check that

the constraints one gets by requiring them to vanish, are in agreement with those coming

from equations of motion analysis.

A non-trivial question one can ask is whether the vanishing of β(g) at two-loops leaves

some freedom in the scalar couplings compared to the equation of motion analysis. And,

if this is the case, at which loop order in CPT one should go, to fix such freedom. The

answer turns out to be rather simple: admissible operators of the form [φn] will be fully

determined by imposing the vanishing of the β-function coefficient βn−2, and no higher

orders will be needed. The toy model we are going to discuss has operators with n = 3, 4

only, and, consistently, we will see that the constraints coming just from the vanishing of

β1 and β2, will provide the full gravity answer.

Another interesting question is which further constraints the vanishing of the one and

two-loop coefficients of β(g) put on the CFT taking into account 1/N corrections, that is,

going beyond planar level. As already emphasized, one does not expect exact conformal

manifolds to survive at finite N , without supersymmetry. However, one can ask whether

non-trivial CFTs with non-supersymmetric conformal manifolds persisting at first non-

planar level could exist. That this can be, it is not obvious, and this is what we will

address next.

3.2 Scalar fields in AdS

We want to compare the holographic analysis with CPT at two-loops, which, as such,

involves at most four-point functions, eqs. (2.6) and (2.19). Therefore, for simplicity, we

will focus on models with cubic and quartic couplings, only. The bulk action reads

S =
1

2κ2
d+1

∫
dd+1x

√
−g
(
R− 1

2
gµν∂µφ∂νφ− 2Λ +

[
φ3
]

+
[
φ4
])

, (3.3)

where Λ is the (negative) cosmological constant and the last two terms represent cubic and

quartic interactions. The absence of a mass term for φ guarantees that the dual operator

O is marginal, i.e. ∆O = d. We would like to constrain the explicit form of cubic and

quartic couplings by requiring the existence of a conformal manifold under a deformation

parametrized by φ itself. We take κd+1 ∼ N−1 to match holographic correlators with

CFT correlation functions in the large-N limit. In the above normalization, the two point

function 〈OO〉 scales as N2. Such unusual normalization has the advantage to treat demo-

cratically all Witten diagrams (as well as the dual n-point functions, and so the β-function

coefficients βn), in the sense that, regardless the number of external legs, they all scale the

– 13 –



J
H
E
P
1
1
(
2
0
1
7
)
1
6
7

same with N , at any fixed order in the bulk loop expansion.6 This is the most natural

choice that avoids mixing-up the expansion in 1/N with that in g.

From the action (3.3) one can derive the equations of motion, which read

Rµν−
1

2
gµνR =

1

2
∂µφ∂νφ−

1

2
gµν

(
1

2
∂ρφ∂

ρφ+2Λ

)
− 1√
−g

δ

δgµν

√
−g
([
φ3
]
+
[
φ4
])

(3.4)

�gφ = − δ

δφ

([
φ3
]
+
[
φ4
])
, (3.5)

where �g = gµν∇µ∇ν = gµν(∂µ∂ν − Γρµν∂ρ).

We need to look for pure AdS solutions with constant scalar profile. In absence of

interactions, that is in the strict generalized free-field limit, the large-N CFT reduces to

a massless free scalar φ propagating in a rigid AdS background. The equations of motion

admit a solution with AdS metric and constant scalar field φ = φ0 which, in Poincaré

coordinates, reads

ds2 =
L2

z2

(
dz2 + dxidx

i
)

(3.6)

φ = φ0 (3.7)

with L =
√
d(1− d)Λ being the AdS radius and the AdS boundary sitting at z = 0.

The modulus φ0 parametrizes the dual conformal manifold, described by the deformation

g
∫
ddxO. Eqs. (2.6) and (2.19) are trivially satisfied: since φ is a free field, Witten

diagrams vanish identically (in particular, in eq. (2.19) the integrand itself vanishes).

Let us now consider possible cubic and quartic interactions. From eqs. (3.4)–(3.5) it

follows that couplings compatible with solutions with AdS metric and a constant scalar pro-

file are couplings where spacetime derivatives appear (note that, due to Lorentz invariance,

only even numbers of derivatives are allowed). Schematically, acceptable operators look like

∇∇ . . . φ ∇∇ . . . φ ∇∇ . . . φ∇∇ . . . φ . . . , (3.8)

where full contraction on Lorentz indexes is understood and some (but not all) naked φ’s,

that is φ’s without derivatives acting on them, can appear. Therefore, at the classical

level, i.e. to leading order in 1/N , the requirement of existence of a conformal manifold

under the deformation (1.1) rules out the non-derivative couplings φ3 and φ4, only.7

As anticipated, we want to compare the above analysis with a direct computation

of three and (integrated) four-point functions, which are related to the one and two-loop

coefficients of β(g) via eqs. (2.3)–(2.4), by means of tree-level Witten diagrams. This could

be seen as a simple AdS/CFT self-consistency check, but one can in fact learn from it some

interesting lessons, which could be useful when considering more involved models, as well

as when taking into account loop corrections in the bulk.

6The interested reader can explicitly check this statement, after having properly chosen the normalization

of the bulk-to-boundary propagator.
7One can consider the more general structure (3.2) and the same conclusion holds. Any coupling [φn]

with (an even number of) derivatives is allowed, classically.
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Figure 6. Witten diagram contributing to β1 at leading order in 1/N .

3.2.1 Tree-level Witten diagrams

Let us consider the one-loop coefficient β1, which is proportional to COOO. To leading

order at large N , this corresponds to the Witten diagram shown in figure 6, to which only

cubic couplings [φ3] can contribute.

The pure non-derivative coupling φ3 provides a non-vanishing contribution to COOO.

Therefore, it is excluded. The first non-trivial couplings are then two-derivative interac-

tions. In principle, the following interaction terms are allowed

φ∇µφ∇µφ , φ2∇µ∇µφ . (3.9)

Upon using integration by parts and the equation of motion which, at lowest order in the

couplings, is just ∇µ∇µφ = 0, these interactions are either total derivatives or vanish on-

shell. Therefore, they do not contribute to COOO (this is to be contrasted with the case of

a massive scalar, where these interactions are proportional to φ3).

Next, one can consider interactions with four spacetime derivatives, that is

φ∇µ∇νφ∇µ∇νφ , ∇µφ∇νφ∇µ∇νφ , φ2∇µ∇ν∇µ∇νφ . (3.10)

These terms are also either vanishing on-shell or total derivatives, and do not provide any

contribution to the three-point function 〈OOO〉, at leading order. Let us briefly see this.

Using integration by parts, the second term in (3.10) can be written as∫
∇µφ∇νφ∇µ∇νφ = −1

2

∫
∇ν∇νφ ∇µφ∇µφ , (3.11)

which vanishes upon using the equation of motion. As for the other two terms in (3.10),

using the identity [�,∇µ]φ = −d ∇µφ, they can be re-written, respectively, as∫
φ∇µ∇νφ∇µ∇νφ =

∫ (
1

2
∇ν∇νφ ∇µφ∇µφ−

d

2
φ2∇ν∇νφ

)
, (3.12)

φ2∇µ∇ν∇µ∇νφ = φ2∇µ∇µ∇ν∇νφ− dφ2∇µ∇µφ . (3.13)

Again, both terms vanish upon using the equation of motion, and hence provide no con-

tribution to COOO. One can proceed further, and consider couplings with an increasing

number of derivatives, with structures that generalize (3.10). Using previous results and

proceeding by induction, one can prove that contributions vanish for any number of deriva-

tives. The upshot is that all operators with two or more derivatives either vanish or can
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Figure 7. Exchange Witten diagram contributing to β2, after integration in
∫
ddx.

be turned into total spacetime derivatives, and hence give a vanishing contribution to the

Witten diagram in figure 6 and, in turn, to COOO.

Although derivative couplings provide a vanishing contribution to cubic Witten dia-

grams, they can provide non-vanishing contribution to the four-point function by exchange

Witten diagrams like the one depicted in figure 7 (which include, in the dual CFT, the ex-

change of double-trace operators). Therefore, these interactions can potentially contribute

to the two-loop coefficient β2.

The pure non-derivative coupling φ3 is already excluded by previous analysis (and

it would also contribute to the Witten diagram in figure 7, in fact). Let us then start

considering contributions from operators having one field φ not being acted by derivatives,

i.e. the first ones in (3.9) and (3.10) and generalizations thereof, that is operators of the form

φ∇∇ . . . φ∇∇ . . . φ . (3.14)

There are two possible types of exchange Witten diagrams: (a) diagrams where all external

lines are acted by derivatives, (b) diagrams where at least one external line is free of

derivatives. Focusing, for definiteness, on two-derivative couplings, contributions of type

(a) and (b) correspond to the following integrals, respectively∫
ddx1

∫
ddw1dz1

∫
ddw2dz2 ∇µK(z1,w1−x1)∇µK(z1,w1−x2)G(z1−z2,w1−,w2)

∇νK(z2,w2−x3)∇νK(z2,w2−x4) (3.15)∫
ddx1

∫
ddw1dz1

∫
ddw2dz2 K(z1,w1−x1)∇µK(z1,w1−x2)∇(1)

µ ∇(2)
ν G(z1−z2,w1−,w2)

K(z2,w2−x3)∇νK(z2,w2−x4). (3.16)

K(z, w − xi) is the bulk-to-boundary propagator which, for massless scalars, reads

K(z, w − x) =

(
z

z2 + (w − x)2

)d
, (3.17)

and satisfies the equation ∇µ∇µK(z, w − x) = �gK(z, w − x) = 0. G(z1 − z2, w1 − w2) is

instead the bulk-to-bulk propagator which, for massless scalars, reads

G(z1 − z2, w1 − w2) =
2−dCd
d

ξdF

(
d

2
,
d

2
+

1

2
;
d

2
+ 1; ξ2

)
, Cd =

Γ(d)

πd/2Γ(d/2)
, (3.18)
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where ξ is the geodesic distance between the two points in the bulk where interactions

occur, (z1, w1) and (z2, w2),

ξ =
2z1z2

z2
1 + z2

2 + (w1 − w2)2
. (3.19)

The bulk-to-bulk propagator satisfies the equation �gG(z1, w1; z2, w2) =
1√
g δ (z1 − z2, w1 − w2).

Diagrams of type (a) vanish because the integrated bulk-to-boundary propagator

K(z, w − x) is independent of z and w, namely∫
ddx K(z, w − x) =

πd/2Γ(d/2)

Γ(d)
, (3.20)

and, plugging (3.20) into (3.15), one gets∫
ddx1∇µK(z1, w1;x1) = 0 . (3.21)

Diagrams of type (b), after x-integration, also vanish. Indeed, the integral (3.16) becomes

πd/2Γ(d/2)

Γ(d)

∫
ddw1dz1

∫
dd, w2dz2 ∇µK(z1, w1 − x2)∇(1)

µ ∇(2)
ν G(z1 − z2, w1 − w2)

K(z2, w2 − x3)∇νK(z2, w2 − x4) , (3.22)

and, integrating by parts, one can transfer the covariant derivative ∇(1)
µ acting on the

bulk-to-bulk propagator onto K(z1, w1 − x2), getting

−π
d/2Γ(d/2)

Γ(d)

∫
ddw1dz1

∫
ddw2dz2 �gK(z1, w1 − x2)∇(2)

ν G(z1 − z2, w1 − w2)

K(z2, w2 − x3)∇νK(z2, w2 − x4) , (3.23)

which vanishes because �gK = 0. This computation can be repeated for terms with four

or more derivatives, just replacing single derivatives acting on the propagators in (3.15)

and (3.16) with multiple derivatives. The end result can again be shown to be zero.

The second possible cubic vertexes which could contribute to the exchange Witten

diagram are those with derivatives acting on one field only, schematically

φ2∇∇∇ . . . φ . (3.24)

Using properties of Ricci and Riemann tensors in AdS, one can show that these couplings

can be re-written as sums of terms of the form φ2�pφ, with p an integer. Due to the

property �gK = 0, if derivatives are acting on at least one external line, the result is zero. If

not, namely if derivatives act only on the bulk-to-bulk propagator, then the corresponding

diagram is a special instance of a (b)-type diagram previously discussed and, following

similar steps as in eqs. (3.22)–(3.23), one gets again a vanishing result.

Finally, let us consider shift-symmetric couplings, that is couplings without naked φ’s.

This kind of couplings give rise to diagrams of type (a), very much like (3.15), where all
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Figure 8. Contact Witten diagram contributing to β2, after integration in ddx.

external lines (in fact any line) contain derivatives. Therefore, they do not contribute to

exchange Witten diagrams, either.

This ends our analysis of cubic operators, which fully agrees with equations of motion

analysis.

Let us emphasize that while all cubic couplings but φ3 do not contribute at the level

of three-point functions, they do, in general, as far as exchange Witten diagrams are

concerned. There, it matters that, in computing the two-loop coefficient β2, integration in

ddx is required, and this plays a crucial role in providing a vanishing result, in the end.

Let us now consider quartic couplings. At tree level they do not contribute to β1, but

they can contribute to β2, instead, via contact-terms, as the one depicted in figure 8.

The operators we should consider are just obtained by adding an extra field φ to

all cubic vertexes previously considered. Again, the pure non-derivative coupling φ4 is

excluded from the outset, since it clearly gives a non-vanishing contribution. The other

operators have the following structures

φ∇∇ . . . φ∇∇ . . . φ∇∇ . . . φ , φ2∇∇ . . . φ∇∇ . . . φ , φ3∇∇ . . . φ , (3.25)

as well as the shift-symmetric one

∇∇ . . . φ∇∇ . . . φ∇∇ . . . φ∇∇ . . . φ . (3.26)

Given our previous analysis it is not difficult to compute the contribution of these diagrams

to the integrated four-point function and hence to the β function two-loop coefficient β2.

Upon integration, the diagram in figure 8 either gives zero, when the x-dependence is on

a line where bulk derivatives act, see eq. (3.21), or, after x-integration, it reduces to the

effective vertex of one of the cubic vertices discussed previously, which vanish. We thus see

that all operators (3.25) and (3.26) do not give any contribution to β2. Note, again, that

x-integration plays a crucial role.

To summarize, the constraints on cubic and quartic couplings coming from CPT at

two-loops, already capture the (full) gravity answer, as anticipated. From the analysis in

section 2, it is not difficult to get convinced that operators with n fields φ will be univocally

fixed by computing tree-level Witten diagrams with n external legs, which contribute to

the β function at n− 2 loop order.

As already emphasized, a CFT must include the energy-momentum tensor in the

spectrum of primary operators, which amounts to include dynamical gravity in the bulk. At

– 18 –



J
H
E
P
1
1
(
2
0
1
7
)
1
6
7

tree-level, this would contribute to the exchange Witten diagram in figure 7, since now also

graviton exchange should be considered in the bulk-to-bulk propagator. For a minimally

coupled scalar, which is the case here, the only such contribution would arise from a vertex

of the following kind

hµν∂µφ∂νφ , (3.27)

where hµν denotes the fluctuations of the AdSd+1 metric. It is not difficult to see that,

because the scalar field φ enters under derivatives, the integrated four-point function is

of (a)-type, following our previous terminology, and it vanishes, because of eqs. (3.20)

and (3.21). So, our conclusions are unchanged also once gravity is taken into account.8

Before closing this section, let us note the following interesting fact. Suppose we add

a quartic, non-derivative coupling λφ4 to the free scalar theory. This lifts the flat direction

associated to φ. In the dual CFT, a non-vanishing β function for the dual coupling g

is generated at two-loops, at leading order in 1/N (recall that a one-loop coefficient β1

cannot be generated by a quartic interaction at tree level in the bulk). In the bulk, the

sign of λ matters. In particular, the quartic interaction destabilizes the AdS background

for λ < 0, while it leaves AdS as a stationary point for λ > 0. One can then try to

understand what this instability corresponds to, in the dual CFT. The two-loop coefficient

of the β function in CPT is proportional to the (integrated) contact Witten diagram of

figure 8, which in this case is non-vanishing, i.e. β2 = aλ, with a a positive d-dependent

number, a = πdΓ(d/2)4/2Γ(d)3. Therefore, β2 has the same sign as λ. This means that for

λ > 0 the operator O becomes marginally irrelevant, while for λ < 0 it becomes marginally

relevant. Hence, in the latter case, a deformation triggered by O induces an RG-flow which

brings the theory away from the fixed point. On the contrary, for λ > 0 the deformation is

marginally irrelevant and the undeformed CFT remains, consistently, a stable point. Note

how different this is from the case of SCFTs. There, marginal operators may either remain

marginal or become marginally irrelevant, but never marginally relevant [4], which agrees

with the fact that AdS backgrounds are stable in supersymmetric setups.

3.2.2 Loops in AdS

An obvious question is whether one can push the above analysis to higher orders in 1/N .

This corresponds to take into account loop corrections in the bulk. Already at one-loop,

this is something very hard to do (see, e.g., [22–25], and, more recently, [26–28], where

interesting progress have been obtained from complementary perspectives).

The main issue in this matter is not really to compute loop amplitudes per sé, but

to make their relation to tree-level amplitudes precise, and this is something non-trivial

to do in AdS. In fact, the question we are mostly interested in, here, is slightly different.

Starting from the effective action (3.3), which is valid up to some energy cut-off E, in

computing quantum corrections we are not much interested on how the couplings run with

8For non-minimally coupled scalars one could have other operators contributing to the exchange Witten

diagram. Couplings of the type, e.g., Rµν∂µφ∂νφ would again be allowed since the resulting integrated

four-point function would also be of the (a)-type. Conversely, couplings like Rφ2 (and, more generally, any

non-derivative coupling) would not be permitted because they would instead contribute to the integrated

four-point function via exchange Witten diagrams.
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Figure 9. One-loop Witten diagrams contributing to ∆O, β1 and β2. Cubic and quartic Witten

diagrams should include also those with loop corrections to propagators, but we have not drawn

them explicitly.

the scale but else on which (new) operators would be generated at energies lower than E.9

More precisely, what we have to do is to pinpoint, between the operators having passed our

tree-level bulk analysis, i.e., operators of the form (3.8), those which could induce, at loop

level, effective couplings which have instead been excluded at tree-level, that is the pure

non-derivative couplings φ3 and φ4, as well as a mass term, which was set to zero from

the outset. Such operators would spoil the vanishing of the β function, see figure 9 (the

generation of a φ2-term would modify the scaling dimension of O, which should instead

remain a marginal operator). So, the basic question we have to answer is whether (one

and higher) loop analysis still leaves some of the operators (3.8) being compatible with the

vanishing of the β function (2.1) and with ∆O = d.

That this is not an empty set can be easily seen as follows. Out of the full set (3.8), let

us consider shift-symmetric operators, only, namely operators which are invariant under

the shift symmetry

φ→ φ+ a . (3.28)

In perturbation theory, such operators cannot generate effective operators not respect-

ing (3.28), hence in particular φn terms. Therefore, at least perturbatively, a conformal

manifold does persist, if only shift-symmetric couplings are allowed in the action (3.3).

Let us now consider all other couplings, those with at least one naked φ, which do not

respect the shift-symmetry (3.28). Generically, these operators would generate any effective

operator of the form φn, quantum mechanically. In particular, regardless of spacetime

dimension, φ2 and φ3 will be generated at one-loop by any (non shift-symmetric) operator

of the form (3.8). Operators φn with n ≥ 4, instead, will be generated at one-loop or higher,

depending on spacetime dimension and the specific operator (3.8) one is considering. In any

event, the upshot is that, unless one invokes some unnatural tuning between the a priori

independent couplings λn, any operator with at least one naked φ should be excluded,

9In doing so, we can use the intuition from flat-space physics, since we are dealing with local effects in

the bulk.
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eventually, by requiring a conformal manifold to persist at finite N . This leaves only

shift-symmetric couplings in business, meaning that the shift symmetry (3.28) should be

imposed on the bulk action (3.3) altogether.10

As already noticed, shift-symmetric couplings would not contribute to (integrated)

Witten diagrams not just at one loop but at any loop order in the bulk. Therefore, the

final answer we got may be extended as a statement on the existence of a conformal manifold

generated by O at all orders in the 1/N perturbative expansion.

This apparently strong statement is just due to the axion-like behavior of an operator

subject to eq. (3.28), which, as such, is expected to be lifted by non-perturbative effects

only. The latter are suppressed as, say, e−N . Richer holographic models would behave

differently, and not share such perturbative non-renormalization property. Our analysis

just aims at showing that, in principle, non-supersymmetric conformal manifolds can exist

also beyond planar limit. It would be very interesting to consider models with richer

structure. We will offer a few more comments on this issue in the next, concluding section.

4 Discussion

In general, it is hard to find non-supersymmetric interacting CFTs in d > 2, notable

exceptions being, e.g., the 3d Ising model, the critical O(N) model and Banks-Zaks fixed

point.11 Since its early days, the AdS/CFT correspondence has been a natural framework

where to look for novel examples. Besides the limiting case of generalized free fields, most

attempts have encountered obstructions.

Starting from the originalN = 4 SYM/AdS5×S5 duality, a very natural possibility is to

consider non-supersymmetric orbifold thereof. It was shown in [31] that (unlike in the par-

ent supersymmetric theory) conformal invariance is broken already at leading order in 1/N ,

by the logarithmic running of double-trace operators. This looks like a generic phenomenon

which has been proposed in [32, 33] to be related to the presence of tachyonic instabilities

in the gravity dual [34].12 In this context, the only model we are aware of which evades

this problem, is a non-tachyonic orientifold of Type 0B string theory, discussed in [36].

However, it turns out that the absence of tachyons is not dual to the existence of fixed

points in the dangerous double-trace operator running, but rather to the absence of such

operators, at least at leading order in 1/N [37]. Hence, conformal invariance is preserved

(and a fixed line exists in the space of couplings) but in a rather trivial sense, because of the

exact equivalence of this theory with a subsector of the original N = 4 SYM, at large N .

More recently, another class of non-supersymmetric models obtained as a suitable

double scaling limit of γ-deformed N = 4 SYM has been proposed [38] (see also [39]).

10Following the discussion in the previous section, one can easily get convinced that the inclusion of a

dynamical graviton, hence of the energy-momentum tensor in the low-dimension CFT operators, would not

affect this result.
11In the context of boundary conformal field theories (bCFT) there also exist examples. One such

example, the mixed dimensional QED discussed in [29, 30], is even believed to admit a (perturbative-stable)

conformal manifold. We thank Chris Herzog for making us aware of this possibility.
12Eventually, these problems might also be connected with recent claims about the non-perturbative

instability of non-supersymmetric AdS vacua [35].
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For example, there exists a four-dimensional two (complex) scalar theory which looks

particularly simple at face value. These models, although not being unitary, are interesting

in many respect, but they also share the presence of double-trace operators in the effective

action which spoil conformal invariance at leading order in 1/N . In a more recent

work [40], it was suggested that a suitable refinement of these models (that is, introducing

an extra flavor structure for the component fields) could project out the double-trace

operators, at least at leading order in 1/N , similarly to [37]. And that also three and

six-dimensional versions of the same model are not plagued by double-trace operator

running, at large N . It would be interesting to see whether conformal invariance is

preserved beyond leading order and, if this is the case, if a conformal manifold exists.

These models look tractable enough, with respect to full-fledged top-down models, to

make one hope that some concrete progress could be possible. More difficult, here, is to

have some intuition about what the gravity dual description could be.

Within less ambitious, bottom-up models one can try to consider simple improvements

of our one-field model. The basic reason why supersymmetric theories can admit conformal

manifolds is due to the knowledge of the (perturbatively exact) β function for elementary

fields and the possibility that some linear combinations have vanishing anomalous dimen-

sion γ, that is

γj(g1, . . . , gn) = 0 , j = 1, 2, . . . ,m , (4.1)

where gi are the couplings associated to classically marginal operators Oi. If n > m, the

above equations describe a n−m dimensional manifold of exactly marginal deformations,

the conformal manifold. In a non-supersymmetric, bottom-up context, one can imagine to

deform a CFT by (say) two scalar marginal operators Oi as

δS = g1

∫
ddxO1 + g2

∫
ddxO2 , (4.2)

with the couplings subject to the constrain

F (g1, g2) = 0 . (4.3)

This equation defines a line in the space of couplings. One can demand that on (4.3), at

one and two loops in CPT, β functions vanish and, generalizing the analysis of section 2,

read-off the corresponding constraints that the existence of such one-dimensional conformal

manifold imposes on the original CFT. Two-field models like the one above can be cooked-

up holographically, and one might hope to get some richer answers with respect to the

one-field model we have considered here.
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