8 research outputs found

    Assessment of bone structure and acoustic impedance in C3H and BL6 mice using high resolution scanning acoustic microscopy

    No full text
    articleTwo hundred-MHz time-resolved scanning acoustic microscopy was applied for the investigation of acoustic and structural bone properties of mice from two inbred strains. Transverse sections of femur taken from 5 C57BL/6J@Ico and 5 C3H/HeJ@Ico mice were explored. Both strains had the same bone diameter, but the C3H/HeJ@Ico mice had greater cortical thickness, smaller cancellous diameter, and greater acoustic impedance values than C57BL/6J@Ico mice. The strong differences in the measured acoustic impedances among the two inbred strains indicate that the impedance is a good parameter to detect genetic variations of the skeletal phenotype in small animal models

    Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation muCT

    No full text
    article200 MHz scanning acoustic microscopy (SAM) and synchrotron radiation μCT (SR-μCT) were used to assess microstructural parameters and tissue properties in site-matched regions of interest in cortical bone. Anterior and postero-lateral regions of ten cross sections from human cortical radius were explored. Structural parameters, including diameter and number of Haversian canals per cortical area (Ca.Dm, N.Ca/Ar) and porosity Po were assessed with both methods using a custom-developed image fusion and analysis software. Acoustic impedance Z and degree of mineralization of bone DMB were extracted separately for osteonal and interstitial tissues from the fused images. Structural parameter estimations obtained from radiographic and acoustic images were almost identical. DMB and impedance values were in the range between 0.77 and 1.28 g cm−3 and 5.13 and 12.1 Mrayl, respectively. Interindividual and regional variations were observed, whereas the strongest difference was found between osteonal and interstitial tissues (Z: 7.2 ± 1.1 Mrayl versus 9.3 ± 1.0 Mrayl, DMB: 1.06 ± 0.07 g cm−3 versus 1.16 ± 0.05 g cm−3, paired t-test, p < 0.05). Weak, but significant correlations between DMB and Z were obtained for the osteonal (R2 = 0.174, p < 10−4) and for the pooled (osteonal and interstitial) data. The regression of the pooled osteonal and interstitial tissue data follows a second-order polynomial (R2 = 0.39, p < 10−4). Both modalities fulfil the requirement for a simultaneous evaluation of cortical bone microstructure and material properties at the tissue level. While SAM inspection is limited to the evaluation of carefully prepared sample surfaces, SR-μCT provides volumetric information on the tissue without substantial preparation requirements. However, SAM provides a quantitative estimate of elastic properties at the tissue level that cannot be captured by SR-μC

    Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements

    No full text
    articleAccurate clinical interpretation of the sound velocity derived from axial transmission devices requires a detailed understanding of the propagation phenomena involved and of the bone factors that have an impact on measurements. In the low megahertz range, ultrasonic propagation in cortical bone depends on anisotropic elastic tissue properties, porosity and the cortical geometry (e.g., thickness). We investigated 10 human radius samples from a previous biaxial transmission study using a 50-MHz scanning acoustic microscope (SAM) and synchrotron radiation microcomputed tomography. The relationships between low-frequency axial transmission sound speed at 1 and 2 MHz, structural properties (cortical width Ct.Wi, porosity, Haversian canal density and material properties (acoustic impedance, mineral density) on site-matched cross-sections were investigated. Significant linear multivariate regression models (1 MHz: R2 = 0.84, p < 10−4, root-mean-square error (RMSE) = 38 m/s, 2 MHz: R2 = 0.65, p < 10−4, RMSE = 48 m/s) were found for the combination of Ct.Wi with porosity and impedance. A new model was derived that accounts for the nonlinear dispersion relation with Ct.Wi and predicts axial transmission velocities measured at different ultrasonic frequencies (R2 = 0.69, p < 10−4, RMSE = 52 m/s

    Variations of microstructure, mineral density and tissue elasticity in B6/C3H mice

    No full text
    article200-MHz scanning acoustic microscopy (SAM) and synchrotron radiation μCT (SR-μCT) were used to assess microstructural parameters, acoustic impedance Z and tissue degree of mineralization of bone (DMB) in site-matched regions of interest in femoral bone of two inbred strains. Transverse femoral sections taken from 5 C57BL/6J@Ico (B6) and 5 C3H/HeJ@Ico (C3H) mice (5.5 months old) were explored. Mass density ρ, elastic coefficient c11 and Young's modulus E1 were locally derived in the distal epiphysis, distal metaphysis for trabecular bone and mid-diaphysis for cortical bone using a rule-of-mixture model. Structural parameter estimations obtained from X-ray tomographic and acoustic images were almost identical. Both strains had the same bone diameter, but the C3H mice had greater cortical thickness and smaller cancellous diameter than did B6 mice. The average DMB and impedance values were in the range between 1.13 and 1.33 g cm− 3 and 5.8 and 7.8 Mrayl, respectively. All tissue parameters were lower in B6 mice than in C3H mice. However, interstrain differences of DMB were much less (up to 3.8%) than differences of Z (up to 13.2%). SAM and SR-μCT fulfill the requirement for a simultaneous evaluation of cortical bone microstructure and material properties at the tissue level. However, SAM provides a quantitative estimate of elastic properties at the tissue level that cannot be captured by SR-μCT. The strong differences in the measured acoustic impedances among the two inbred strains indicate that the impedance is a good parameter to detect genetic variations of the skeletal phenotype in small animal models

    The acoustic emission technique in orthopaedics: A review

    No full text
    Traditionally, orthopaedic research has focused upon the assessment of individual components in an implanted construct. A great deal of research has investigated the durability of the metallic stem, even though this is the most robust component in the implanted system. Standards have been developed for the structural assessment of the implant and even the bone cement which holds the implant in place in the bone. However, the construct as a whole, and its short- and long-term structural integrity, are rarely assessed, and few methods have been established to monitor and predict the mechanisms leading to failure. These are necessary to ensure that any new implants entering the market will perform satisfactorily and prevent premature revision surgery.The acoustic emission (AE) technique offers the capability of monitoring structural degradation passively and in real time, and can distinguish failure mechanisms and their location through the analysis of AE parameters. In the present paper, the use of acoustic emission in orthopaedics, in particular for the evaluation of hip replacement constructs, is reviewed. Following this, three case studies undertaken at the University of Southampton are presented, in which acoustic emission on-line monitoring has been used to evaluate the performance of simulated artificial hip replacement constructs and their constituents during static and fatigue testing. In Case Study 1, the fatigue behaviour of bone cement is characterized; in Case Study 2, the residual stresses induced in the construct as a result of bone cement cure are investigated; in Case Study 3, the mechanisms leading to failure of a carbon fibre reinforced plastic hip stem during fatigue testing are characterized
    corecore