55,911 research outputs found

    Optimisation of the spark gap parameters for high powered ultrasound applications

    Get PDF
    There is considerable interest in the industrial and commercial applications of high power ultrasound (HPU) generated using pulsed power techniques. These applications include metal peening, the treatment of ores and minerals before extraction, drilling technologies and the comminution and recovery of waste materials. In all of these applications, it is important to optimise the parameters of the discharge causing the shock wave in the working medium to maximise the efficiency of the treatment. In a research project at the University of Strathclyde, some applications of HPU to the treatment of waste to assist in recycling have been investigated. Two systems have been considered, slag from the manufacture of stainless steel and bottle glass. With the slag material, it is intended to separate stainless steel from the silicate matrix to permit its recovery. With the bottle glass, the intention is comminution of the material to allow it to be recycled in a more valuable form. Measurements of the efficiency of these processes have been made in terms of the mass of material processed versus the energy input as the parameters of the discharge gap have been varied. In parallel with this work, measurements have been made using pinducer sensors to determine the energy in HPU pulses generated by discharges under identical conditions. Correlations are made between the efficiency of material treatment and the intensity of the HPU pulse measured in the far field. It is hoped that this approach will allow the optimal gap parameters to be determined using pinducer measurements rather than time consuming trials based around materials processing

    Determinants and outcomes of motivation in health professions education: a systematic review based on self-determination theory

    Get PDF
    Purpose: This study aimed at conducting a systematic review in health professions education of determinants, mediators and outcomes of studentsā€™ motivation to engage in academic activities based on the self-determination theoryā€™s perspective. Methods: A search was conducted across databases (MEDLINE, CINHAL, EMBASE, PsycINFO, and ERIC databases), hand-search of relevant journals, grey literature, and published research profile of key authors. Quantitative and qualitative studies were included if they reported research in health professions education focused on determinants, mediators, and/or outcomes of motivation from the self-determination and if meeting the quality criteria. Results: A total of 17 studies met the inclusion and quality criteria. Articles retrieved came from diverse locations and mainly from medical education and to a lesser extent from psychology and dental education. Intrapersonal (gender and personality traits) and interpersonal determinants (academic conditions and lifestyle, qualitative method of selection, feedback, and an autonomy supportive learning climate) have been reported to have a positive influence on studentsā€™ motivation to engage in academic activities. No studies were found that tested mediation effects between determinants and studentsā€™ motivation. In turn, studentsā€™ self-determined motivation has been found to be positively associated with different cognitive, affective, and behavioural outcomes. Conclusion: This study has found that generally, motivation could be enhanced by changes in the educational environment and by an early detection of studentsā€™ characteristics. Doing so may support future health practitionersā€™ self-determined motivation and positively influence how they process information and their emotions and how they approach their learning activities

    Evaluation of the hazard from exposure to electron irradiation simulating that in the synchronous orbit

    Get PDF
    The electron spectrum predicted for the synchronous orbit was simulated to determine the effects that might occur to astroscientists exposed to such irradiation while on a prolonged space station mission in that region. Miniature pigs were exposed to monoenergetic and spectral-fractionated irradiations with 0.5 to 2.1 MeV electrons. Clinical and pathological alterations observed in biopsies were correlated with depth-dose pattern and length of post irradiation period up to one year. With monoenergetic electrons, the lowest dose causing a recognizable lesion was 1450 rad and with increasing dose lesions appeared earlier and were more severe. At the highest dose given, 2650 rad, ulceration extending into the dermis was present by twenty one days and required about four months for complete healing. Spectral-fractionated irradiations, in which the total dose range was essentially comparable to that of the monoenergetic series, resulted in very minimal outer dermis edema at 1790 rad and at no dose employed did necrosis of epidermis or ulceration into dermis occur

    Assessment of the performance of alternative aviation fuel in a modern air-spray combustor (MAC)

    Get PDF
    Recent concerns over energy security and environmental considerations have highlighted the importance of finding alternative aviation fuels. It is expected that coal and biomass derived fuels will fulfil a substantial part of these energy requirements. However, because of the physical and chemical difference in the composition of these fuels, there are potential problems associated with the efficiency and the emissions of the combustion process. Over the past 25 years Computational Fluid Dynamics (CFD) has become increasingly popular with the gas turbine industry as a design tool for establishing and optimising key parameters of systems prior to starting expensive trials. In this paper the performance of a typical aviation fuel, kerosene, an alternative aviation fuel, biofuel and a blend have been examined using CFD modelling. A good knowledge of the kinetics of the reaction of bio aviation fuels at both high and low temperature is necessary to perform reliable simulations of ignition, combustion and emissions in aero-engine. A novel detailed reaction mechanism was used to represent aviation fuel oxidation mechanism. The fuel combustion is calculated using a 3D commercial solver using a mixture fraction/pdf approach. Firstly, the study demonstrates that CFD predictions compare favourably with experimental data obtained by QinetiQ for a Modern Airspray Combustor (MAC) when used with traditional jet fuel (kerosene). Furthermore, the 3D CFD model has been refined to use the laminar flamelet model (LFM) approach that incorporates recently developed chemical reaction mechanisms for the bio-aviation fuel. This has enabled predictions for the bio-aviation fuel to be made. The impact of using the blended fuel has been shown to be very similar in performance to that of the 100% kerosene, confirming that aircraft running on 20% blended fuel should have no significant reduction in performance. It was also found that for the given operating conditions there is a significant reduction in performance when 100% biofuel if used. Additionally, interesting predictions were obtained, related to NOx emissions for the blend and 100% biofuel

    Nonlinear nanomechanical resonators for quantum optoelectromechanics

    Full text link
    We present a scheme for tuning and controlling nano mechanical resonators by subjecting them to electrostatic gradient fields, provided by nearby tip electrodes. We show that this approach enables access to a novel regime of optomechanics, where the intrinsic nonlinearity of the nanoresonator can be explored. In this regime, one or several laser driven cavity modes coupled to the nanoresonator and suitably adjusted gradient fields allow to control the motional state of the nanoresonator at the single phonon level. Some applications of this platform have been presented previously [New J. Phys. 14, 023042 (2012), Phys. Rev. Lett. 110, 120503 (2013)]. Here, we provide a detailed description of the corresponding setup and its optomechanical coupling mechanisms, together with an in-depth analysis of possible sources of damping or decoherence and a discussion of the readout of the nanoresonator state.Comment: 15 pages, 6 figure

    Alterations in the self-renewal and differentiation ability of bone marrow mesenchymal stem cells in a mouse model of rheumatoid arthritis

    Get PDF
    Introduction: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease primarily involving the synovium. Evidence in recent years has suggested that the bone marrow (BM) may be involved, and may even be the initiating site of the disease. Abnormalities in haemopoietic stem cells' (HSC) survival, proliferation and aging have been described in patients affected by RA and ascribed to abnormal support by the BM microenvironment. Mesenchymal stem cells (MSC) and their progeny constitute important components of the BM niche. In this study we test the hypothesis that the onset of inflammatory arthritis is associated with altered self-renewal and differentiation of bone marrow MSC, which alters the composition of the BM microenvironment. Methods: We have used Balb/C Interleukin-1 receptor antagonist knock-out mice, which spontaneously develop RA-like disease in 100% of mice by 20 weeks of age to determine the number of mesenchymal progenitors and their differentiated progeny before, at the start and with progression of the disease. Results: We showed a decrease in the number of mesenchymal progenitors with adipogenic potential and decreased bone marrow adipogenesis before disease onset. This is associated with a decrease in osteoclastogenesis. Moreover, at the onset of disease a significant increase in all mesenchymal progenitors is observed together with a block in their differentiation to osteoblasts. This is associated with accelerated bone loss. Conclusions: Significant changes occur in the BM niche with the establishment and progression of RA-like disease. Those changes may be responsible for aspects of the disease, including the advance of osteoporosis. An understanding of the molecular mechanisms leading to those changes may lead to new strategies for therapeutic intervention

    An RF-Driven Josephson Bifurcation Amplifier for Quantum Measurements

    Full text link
    We have constructed a new type of amplifier whose primary purpose is the readout of superconducting quantum bits. It is based on the transition of an RF-driven Josephson junction between two distinct oscillation states near a dynamical bifurcation point. The main advantages of this new amplifier are speed, high-sensitivity, low back-action, and the absence of on-chip dissipation. Pulsed microwave reflection measurements on nanofabricated Al junctions show that actual devices attain the performance predicted by theory.Comment: 5 Figure

    CDK4/6 inhibitors in breast cancer ā€“ from inĀ vitro models to clinical trials

    Get PDF
    Background: Breast cancer (BC) is one of the leading causes of cancer-related deaths worldwide. Standard therapies aim to disrupt pathways that regulate the growth and survival of BC cells. Therapeutic agents such as endocrine therapy target hormone dependent cancer cells and have shown to be suitable approaches in BC treatment. However, in the case of metastatic BC, curative options are limited, thus strategies have been explored to improve survival and clinical benefit. In this review we provide an up to date overview of the development of anti-cancer agents, particularly the newly developed CDK4/6 inhibitors. Material and methods: A search of PubMed was conducted to identify preclinical data surrounding the development of endocrine therapy and CDK4/6 inhibitors in early and metastatic BC. Clinical data were also sought using PubMed and clinicaltrials.gov. Results: Agents targeting oestrogen and its receptor have demonstrated positive outcomes in clinical trial with improvements in objective responses and overall survival. However, patients do exhibit adverse effects and some will eventually fail to respond to endocrine therapy. Subsequently, the development and success of 3rd generation CDK4/6 inhibitors in preclinical studies has allowed their introduction in clinical studies. In patients with ERā€‰+ā€‰BC, CDK4/6 have demonstrated dramatic improvements in progression free survival when used in combination with endocrine therapies. Similar findings were also observed in metastatic disease. Adverse effects were limited in CDK4/6 treated patients, demonstrating the safety of these agents. Conclusion: CDK4/6 inhibitors are highly specific making them a safe and viable therapeutic for BC and there is increasing evidence of their potential to improve survival, even in the metastatic setting. Although a number of trials have demonstrated this, as a lone therapy or in combination, optimisation of treatment scheduling are still required in further clinical investigations

    Business Service Firms and Market Share

    Get PDF
    Traditional thinking suggests that profitability is linearly dependent upon market share, an assumption not carefully tested/or services. This assumption is examined in this study for business services in light of the apparent opportunity in this sector for entrepreneurs. Cross-sectional data from secondary sources suggest that a V-shaped relationship may be a better description of variation up to nine times average firm size in this sector. This interpretation of results is important to the strategy of small business managers became it relates to the plans they might make in growing their businesses. Normative recommendations promise improvements/or firms entering the critical intermediate share stage. These include focusing on revenue per employee as an objective, developing professional management assistance, formal projectfication of work (thus utilizing "virtual organizations'), and paying a11ention to organization while growing
    • ā€¦
    corecore